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Executive Summary  
OVERVIEW 
This project took advantage of an unprecedented deployment of acoustic receiver 
infrastructure around the Western Australian coast to monitor a large number of sharks 
implanted with acoustic tags. This research was undertaken to better understand the 
temporal and spatial dynamics of commercially-important sharks in Western Australia, 
which has enabled a re-evaluation of the risks of cryptic sources of catch and bycatch to 
dusky and sandbar shark stocks and development of population simulation models with 
which to test the implications of spatially-different histories of fishery management, as well 
as future spatial-management arrangements for whiskery and gummy sharks stocks. 

The fishery biology (reproduction, growth, age, gear selectivity, fishing mortality, etc.) of 
Western Australia's four most commercially-important shark stocks (gummy, dusky, whiskery 
and sandbar sharks) are relatively well understood. However, uncertainty regarding their 
migratory and dispersal patterns remains a significant caveat to ensuring their sustainability 
and for the long-term viability of the fisheries that target them. Shark fishing has been 
prohibited in the north-west for more than a decade to protect adult dusky and sandbar sharks. 
However, the extent to which adults remain vulnerable to capture during their southerly natal 
migrations cannot be ascertained due to lack of knowledge about the timing, duration and 
pathways of those migrations. Gummy and whiskery shark movements between target-fishery 
management zones have significant implications for those stocks’ continued recovery from 
historical periods of overfishing. In particular, the effects of gillnet fishing in the south east of 
the State during the previous seasonal closure of the fisheries west of 118° E and a 
previously-observed  apparent westwardly emigration of gummy sharks from the south-
eastern management zone are of interest to fishery managers and industry alike. 

Aims and objectives  

This project aimed to provide a better understanding of the dynamics of the four main 
commercial shark species as a basis for developing spatially and temporally-explicit stock 
assessment models and risk assessments. The specific project objectives were to: 

1 Identify and describe the timing, duration and pathways of dusky and sandbar shark 
migrations 

2 Quantify exchange rates of gummy and whiskery sharks among management zones 

3 Reassess stocks’ status with greater reference to their spatial and temporal 
dynamics 

Methodology  

Movements of sandbar, dusky, gummy and whiskery sharks were studied across Western 
Australia using acoustic telemetry. Acoustic receivers were located off Ningaloo Reef, from 
Tantabiddi Creek south to Coral Bay and in the south-west of the state, between Perth and the 
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Recherche Archipelago. Sharks were internally implanted with uniquely-coded acoustic 
transmitters from commercial demersal gillnet fishing vessels in the South and during fishery-
independent longline and drumline fishing around the State.  

For gummy and whiskery sharks, movement information was combined with catch history, 
standardised catch rate indices and biological information as a basis for development of 
several simulation models to represent population dynamics for future stock assessment. For 
dusky and sandbar sharks, movement information was used in a qualitative, consequence-
likelihood risk assessment framework to re-evaluate remaining risks to their sustainability. 

Results/key findings  

This study internally implanted 397 sharks with acoustic transmitters and monitored the 
occurrence and movements of 207 of these individuals along the West and South coasts of 
Western Australia. Tagged sharks were monitored for periods of up to 1,453 days. Complex 
movement dynamics were revealed at very different temporal and spatial scales. Large male 
and female dusky sharks showed clear migratory displacements between northern and 
southern WA. The majority of tagged sandbar sharks were almost exclusively detected by 
receivers off Ningaloo Reef, with only two detected elsewhere. Gummy and particularly 
whiskery sharks showed relatively limited movements as a whole, although individuals 
showed that these species are nonetheless capable of relatively large-scale displacements. 

For gummy and whiskery sharks, several population dynamics models were developed, 
from simple surplus production models to fully integrated size-based and sex-structured 
spatial models that make use of movement information derived from the acoustic and 
conventional tagging data generated by this and previous FRDC-funded projects. The 
calibration of these models and their future use for stock assessment required construction 
of relative abundance indices. An attempt was made to develop indices of abundance based 
on standardisation of the Temperate Demersal Gillnet and Demersal Longline Fisheries 
(TDGDLF) catch and effort data with imputation of missing temporal and spatial 
information. However, significant impediments to comparing monthly (1975-2006) and 
daily (>2006) effort data from the TDGDLF were encountered with this approach and these 
will require further resolution before these two incongruous time-series of data can be used 
to develop indices of stock abundance. For these reasons, a standardised catch rate index 
that confidently reflects stock abundance cannot currently be presented. Once these indices 
are developed, however, the population dynamics models developed in this study will be 
used to re-assess the status of whiskery and gummy shark stocks (and potentially other 
species, in the future).  

For dusky and sandbar sharks, risk ratings for the majority of issues identified through risk 
assessments were at acceptable levels, including those relating to target TDGDLF fishing and 
for most other WA fisheries. 
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Implications for relevant stakeholders  

The telemetry data collected through this project are likely to remain the best available source 
of information on dusky, sandbar, gummy and whiskery shark movements for many years to 
come. Although problems with standardising CPUE data across monthly and daily reporting 
periods could not be overcome before preparation of this report, the models that have been 
developed will be used to provide new gummy and whiskery shark stock assessment advice 
for management of the TDGDLF. By incorporating stock movement information, these 
models will be of particular benefit in assessing how these stocks may be impacted by 
potential future spatial management arrangements, e.g. marine reserves. 

Confirmation of adult dusky shark movement patterns enabled a more refined assessment of 
Ecologically Sustainable Development (ESD) risks to this stock. Results of this assessment 
suggest that risks to adult dusky sharks are generally low, which should provide industry and 
fishery managers with confidence that existing management arrangements are providing 
adequate protection for the breeding stock, allowing it to recover from the previous level of 
depletion. The data collected on movements of adult sandbar sharks was less conclusive but 
still suggested that existing spatial management, especially the prohibition of commercial 
shark fishing off the Gascoyne and Pilbara coasts have resulted in generally low risks to the 
recovery of this stock. Risk assessments did however identify the resumption of fishing in the 
Northern Shark Fisheries (NSF), which have been inactive since 2009, would pose a medium 
to high risk to dusky and sandbar sharks, respectively. The internal implantation of acoustic 
transmitters with expected battery lives of up to ten years during this project provide an 
option for further studies of their distributional extent in NSF fishing grounds for several 
more years. 

Recommendations  

To further develop the research conducted in this study, the development of standardised 
CPUE indices that take into account the nature of commercial catch and effort data reporting 
and spatio-temporal resolution is required for calibrating the population dynamics models. In 
addition, species-specific reference points should be developed for improved stock 
assessments. Finally, consideration should be given to the potential medium to high Resource 
sustainability risks to dusky and sandbar sharks in determining future arrangements for the 
NSF and, consideration could be given to utilising internally-tagged sharks from the present 
project in further studying the spatial overlap of these species with future NSF fishing 
grounds. 

KEYWORDS 

Whiskery shark · Gummy shark · Dusky shark · Sandbar shark · Bronze whaler · 

Passive Acoustic Monitoring · Telemetry · Movement · Modelling 
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1. Introduction 

The two Western Australian TDGDLF operate throughout a large area of continental shelf 
waters between the South Australia (SA)/ Western Australia (WA) border and Steep Point. 
Collectively, the fisheries are among Western Australia’s largest commercial finfish fisheries, 
with annual catches of around 1500t, a Gross Value of Production (GVP) of $6.5M and a 
fleet of 30-40 active vessels, directly employing an estimated 85 skippers and crew (Braccini 
et al. 2014). As such, they are an important source of fresh fish, regional employment and 
income for the State. Due to the many similarities in their principal fishing method 
(overwhelmingly demersal gillnet), management plans and species composition of catches, 
the fisheries are often referred to and reported together. However, these fisheries are actually 
comprised of three distinct management ‘zones’ focused on different suites of target and 
byproduct species and age classes, as well as having disjunct histories of fleet development, 
research, management and sustainability issues.  

Off the south and south-west coasts, the Joint Authority Southern Demersal Gillnet and 
Demersal Longline Managed Fishery (JASDGDLF) is split into two management zones. Zone 
1 extends southwards from 33°S latitude off the west coast to 116° 30’E longitude off the 
south coast and Zone 2 extends eastwards from 116° 30’E to the WA/SA border (129°E). The 
West Coast Demersal Gillnet and Demersal Longline (Interim) Managed Fishery 
(WCDGDLF) extends northwards from 33°S latitude to Steep Point (26° 30’S), although the 
fishery was excluded from inside the 250 metre depth contour between latitudes 31°S and 
33°S in November 2007 (Braccini et al., 2014), effectively making 31°S the fishery’s 
southern boundary. The fisheries’ primary target species are the gummy shark (Mustelus 
antarcticus) in Zone 2 and to a lesser extent in the south eastern part of Zone 1; the dusky 
shark (Carcharhinus obscurus) in Zone 1, the western part of Zone 2 and the WCDGDLF and 
the sandbar shark (Carcharhinus plumbeus) in the WCDGDLF. Whiskery sharks (Furgaleus 
macki) are also a major component of catches and have historically been targeted in all three 
management zones. All four of these species are known to be taken by a variety of other 
commercial and recreational fishing methods but in very low numbers (McAuley et al., 2015). 

The biology of gummy, dusky, sandbar and whiskery sharks was extensively studied and their 
stocks’ status assessed through a series of consecutive FRDC projects beginning in 1993 
(Project no. 93/067, 96/130 and 2000/134). Management arrangements for the demersal 
gillnet and longline fisheries have been continually refined as new stock assessment results 
were derived, mostly through adjustment of permitted effort levels. While this previous 
research has provided a robust empirical basis for establishing sustainable harvest 
arrangements for the target fisheries, it also identified a number of information gaps and 
remaining sustainability risks relating to the stocks’ spatial and temporal dynamics. 
Furthermore, differential management actions within the three management zones (McAuley 
et al., 2015) have raised further questions about these stocks’ movements between 
management regimes and resulting implications for their sustainability.  
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In particular, while demographic analyses have demonstrated that current limits on demersal 
gillnet fishing effort should provide sustainable rates of dusky and sandbar shark fishing 
mortality, these assessments also highlighted that additional adult and sub-adult mortality 
rates of as little as 1‒2% are sufficient to cause declining recruitment to these stocks. Despite 
State-wide measures to mitigate catches of older dusky and sandbar sharks (including a large 
area closure in the north-west of the State, commercial protection of all sharks and rays, 
maximum whaler shark size limit and gear restrictions), subsequent monitoring of the mainly 
neonate dusky shark catch rates in the gillnet fisheries have suggested that recruitment may, 
in fact, have declined through the 1990s and early 2000s as a result of additional, unidentified 
(cryptic) fishing mortality. Fishery independent survey data also indicated that the breeding 
stock of sandbar sharks was rapidly depleted by the development of targeted demersal 
longline fishing off the State’s north coast between 1997 and 2005. The sustainability of 
demersal gillnet and longline fisheries’ catches in the southern half of the State are therefore 
dependent on minimising further adult fishing mortality. Whiskery sharks were assessed as 
being overfished during the 1980s and early 1990s and below their (then) minimum 
acceptable limit of 40% virgin biomass. Although a decade of subsequent effort reduction 
measures slowed the rate of stock decline, the stock did not show signs of stabilisation until 
the mid-2000s and a two month closure of the WCDGDLF and JASDGDLF Zone 1 was 
therefore introduced in 2006 to protect pre-natal whiskery sharks and boost recruitment to the 
stock. Although subsequent catch rate trends have given cause for optimism that this stock is 
recovering, concerns have been raised, particularly by industry members, about the 
implications of permitting ongoing landings of whiskery sharks in Zone 2 during the seasonal 
closure of the fisheries, to the west of Albany. While previous age-structured stock 
assessment of gummy sharks suggested that the WA stock has been increasing above its 
minimum 40% biomass limit since the mid-1990s, this stock has not been formally-assessed 
since 1996. Thus industry and managers remain uncertain whether the increasing trend in 
gummy shark catch rates observed within both zones of the JASDGDLF is a result of 
increasing biomass and westwards re-population into Zone 1 or is a function of changes in 
fishing mortality, with possibly detrimental sustainability implications. Uncertainty regarding 
the movement and migratory patterns of these stocks, therefore, remains a significant 
impediment to ensuring their sustainability and for the long-term viability of their target 
fisheries.  

Dusky and sandbar shark stocks are distinctly size-segregated, with juveniles targeted by 
demersal gillnet and longline fishers off the lower-west and south-west coasts, hundreds of 
kilometres to the South of adults’ primary distribution. To maintain adequate recruitment to 
these stocks, shark fishing has been prohibited throughout most of the Gascoyne Bioregion 
(North of 26° 30’s and West of 114° 06’E) since 1993 and in the western portion of the North 
Coast Bioregion (between 114° 06’E and 120° 00’E) since 2005, to protect adult sharks. 
However, the extent to which adults remain vulnerable to capture during their southerly 
migrations cannot be ascertained due to lack of knowledge about the timing and duration of 
those migrations. Gummy and whiskery shark movements between TDGDLF management 
zones also have potentially significant implications for those stocks’ continued recovery from 
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historical periods of overfishing. In particular, the effects of gillnet fishing in the south-east of 
the State during the seasonal closure of the TDGDLF west of 118 degrees longitude between 
2006 and 2014 and an apparent westwardly emigration of gummy sharks from the south-
eastern management zone during the early-mid 2000s are of interest to fishery managers and 
industry alike.  

A unique opportunity to evaluate these and other spatial-temporal stock dynamics presented 
itself, via a significant deployment of acoustic telemetry infrastructure deployed around the 
State through various projects (McAuley et al., 2016). Together with improvements in the 
battery life of acoustic tags, the receiver infrastructure located between Ningaloo Reef in the 
North-West and the Recherche Archipelago off the South Coast of WA, enabled the 
collection of long-term information about these stocks’ movements between TDGDLF 
management zones and within and between areas that are open and closed to commercial 
shark fishing (including the closed area off Metropolitan Perth). The acoustic monitoring data 
collected during the current study were therefore intended to provide a better understanding of 
the benefits and limitations of existing fishery management arrangements and a basis for 
developing spatially and temporally explicit population assessment models for TDGDLF-
harvested (adult) gummy and whiskery shark stock components and to allow a more 
empirically-based evaluation of the remaining cryptic risks to adult dusky and sandbar sharks. 
In particular, this project was designed to collect the data to redevelop existing stock 
assessment models for gummy and whiskery sharks in order to provide more detailed advice 
about spatial and temporal aspects of the TDGDLF management arrangements (implications 
of seasonal and area closures, effort displacement/adjustment etc.), as they relate to 
movements of the study stocks (short-term, seasonal and long term movements, 
immigration/emigration between management zones, etc.). 



 

Fisheries Research Report [Western Australia] No. 282, 2017   7 

2. Objectives 

1  Identify and describe the timing, duration and pathways of dusky and sandbar shark 
migrations; 

2  Quantify exchange rates of gummy and whiskery sharks among management zones; 
and 

3  Reassess these stocks’ status with greater reference to their spatial and temporal 
dynamics; 
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3. Methodology  

3.1 Acoustic telemetry data 

3.1.1 Data collection 
Movements of sandbar, dusky, gummy and whiskery sharks were studied across Western 
Australia using acoustic telemetry data. Telemetry data were collected by receivers located 
between Tantabiddi Creek in the North-West (21° 53’S 113° 53.9’E) and Salisbury Island (34° 
21’S 123° 33.1’E) in the South-East (Figure 1). Up to 138 Vemco1 VR2W receivers were 
deployed in three cross-shelf lines and inshore clusters at Ningaloo Reef through the Australian 
Animal Tracking and Monitoring System (AATAMS; http://imos.org.au/aatams.html). Off 
Perth, a cross-shelf array of up to 57 VR2W receivers has been operated by the Ocean Tracking 
Network project (OTN) in collaboration with the WA Department of Fisheries (DoF), since 
2009 (http://oceantrackingnetwork.org). A further 183 VR2W and VR4G (n=25) receivers were 
deployed and operated by DoF as a combination of cross-shelf and along-shore lines off Perth, 
around the South-West Capes region and off the South coast, though the WA Government’s 
Shark Monitoring Network (SMN) Project (McAuley et al., 2016). Another 52 VR2W receivers 
have also been operated by DoF around Cockburn Sound off the southern Perth metropolitan 
coastline for various demersal scalefish studies since 2009. The majority of the telemetry data 
referred to in this study was recorded by the cross-shelf receiver lines off Ningaloo Reef 
(AATAMS array), Perth (OTN array) and the SMN arrays at Cape Leeuwin, Chatham Island 
and Bald Island (Figure 1). While these locations were not explicitly chosen for the purposes of 
the current study, they are nevertheless well-suited for the study of animals’ distributions, 
movements and migration routes within and between Temperate Demersal Gillnet and 
Demersal Longline Fisheries (TDGDLF) management zones and areas ‘closed’ to shark-fishing 
off Perth and the North-West of WA. 

Acoustic receivers in OTN, SMN and DoF arrays were retrieved annually, although the 
timing of retrievals varied slightly each year. The receivers in AATAMS’ Ningaloo array 
were generally retrieved bi-annually in autumn and spring. Shallow water (<30m) receivers in 
all arrays were retrieved and replaced by scuba divers. Deepwater receivers were retrieved 
using acoustic release mechanisms in the Ningaloo array, a Remotely Operated Vehicle 
(ROV) in the SMN arrays, and a combination of acoustic release and ROV in the OTN Perth 
array (acoustic releases were gradually retired in the OTN line as they failed and were 
replaced with ROV-serviced moorings). The development of ROV methods for recovering 
VR2W receivers from deep water during these projects improved recovery rates from around 
81% in 2011 to above 98% since 2013. In addition, acoustic release-fitted receivers were 
retrieved by ROV on more than 70 occasions, after releases failed to operate due to battery or 
mechanical failures. Not only have these new ROV-recover techniques reduced the costs of 
replacing lost equipment but have also demonstrated that the associated costs of data-loss 

                                                 

1 VEMCO/ Amirix Systems Inc. Halifax, Nova Scotia. Canada. 
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from deep-water receiver deployments can effectively be negated. Following retrieval, all data 
were downloaded from VR2W receivers, their memories cleared, internal clocks re-set and 
batteries were replaced. The smaller amount of data from the 25 VR4G receivers deployed off 
Perth and the South and South-West of WA were remotely offloaded via satellite 
communication protocols on a weekly schedule (Bradford et al. 2011, McAuley et al., 2016). 

 

Figure 1.  Location of acoustic receivers (red dots). A, Ningaloo array. B, Perth and Southern Lines 
arrays 

 A total of six fishery-independent research cruises (two per year) were conducted on-board 
DoF’s Research Vessel Naturaliste between May 2011 and August 2013 during which adult and 
large sandbar and dusky sharks were tagged in northern WA. In addition, several days sampling 
with demersal longlines and drumlines were opportunistically conducted during receiver 
maintenance cruises in southern WA during 2012 and 2013. Gummy and whiskery sharks were 
mostly tagged during 51 trips (96 gillnet shots) on-board TDGDLF gillnet vessels operating 
from Albany, Bremer Bay and Augusta during their normal fishing activities between May 2012 
and October 2013. To minimise tagged sharks’ post-release mortality rates, gillnet-caught 
sharks were selected according to their apparent vigour and absence of obvious injuries. This 
selection process, together with lower than expected catch rates of healthy sharks, led to fewer 
whiskery sharks being tagged than were proposed (~100). The implications of the smaller-than-
expected sample of tagged whiskery sharks are discussed in more detail elsewhere in the report. 
A smaller number (n=7) of gummy sharks were caught and tagged while targeting dusky sharks 
with demersal longlines during receiver maintenance cruises in southern WA in 2012 and 2013. 
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Similarly longline-caught sharks were only selected for tagging if they were apparently vigorous 
and lacked any obvious injuries (other than minimal hook entry/exit wounds). 

Study sharks were ‘tagged’ with uniquely-numbered Vemco V16-5H and V16-6H acoustic 
transmitters. Acoustic tags were implanted into sharks’ abdominal cavities, via a small incision 
anterior to the pelvic girdle, using standard surgical procedures (e.g. Heupel et al. 2004).  All 
personnel involved in tagging were previously experienced or trained by experienced taggers 
prior to conducting tagging procedures. Transmitters used to tag gummy and whiskery sharks 
were programmed to transmit at random intervals of between 75 and 150 seconds and 100 – 200 
seconds for sandbar and dusky sharks. Sharks were also fitted with conventional Jumbo 
Rototags on their first dorsal fins, to allow their visual identification and reporting of any re-
captures. Yellow-coloured tags were used during this study to distinguish acoustically-tagged 
sharks from the thousands of others that have previously only been tagged with (orange-
coloured) conventional tags. Promotional materials (posters, pamphlets and fridge magnets, see 
Project materials developed) were distributed to TDGDLF fishers and through DoF regional 
offices to explain what recapture data were requested for acoustically-tagged sharks and that 
rewards were offered for complete reporting of tag recaptures (i.e. tag identification numbers, 
recapture date and location). A few (<10) acoustic tags were returned to project staff, following 
sharks’ recapture and processing by commercial fishers.   

Prior to tagging, sharks were measured to the nearest centimetre Fork length (FL), sexed and the 
release time, date and coordinates were recorded. Upon release, sharks’ conditions were observed 
and classified according to the criteria defined by McAuley et al. (2005) as: 1 (swam away 
strongly), 2 (swam away slowly) or 3 (sluggish or unable to swim away and/or bleeding heavily).  

Although not an intended study species, 53 large bronze whaler sharks (C. brachyurus) were 
also  opportunistically tagged with internal acoustic transmitters in Western Australian waters 
between Perth and Bremer Bay (120⁰ E off the south coast) during this and other related WA 
Government-funded studies. Although this species was previously considered to be a minor 
component of TDGDLF catches (McAuley and Simpfendorfer, 2003), the more detailed catch 
data collected from the fisheries through daily logbooks that were introduced in 2006, 
indicate that bronze whaler sharks have become a more important component of commercial 
catches than was previously observed. As acoustic telemetry data for this species may 
therefore be of current or future benefit to the assessment and management of the TDGDLF, 
the detection data collected for this species are also summarised herein (although are not 
analysed in as much detail as the intended study species). Additional data for two dusky 
sharks were obtained from sharks tagged by the South Australian Research and Development 
Institute (SARDI) in Gulf St. Vincent off the South Australian (SA) coast. 

All acoustic telemetry data are reported in accordance with the relevant data sharing 
agreements and policies between DoF, OTN, SARDI and IMOS. 



 

Fisheries Research Report [Western Australia] No. 282, 2017   11 

3.1.2 Data analyses  

Data collected from acoustic receivers were used to investigate the species’ movement 
ecology (residency periods, fine-scale spatial use, distances travelled, rates of movement, etc.) 
and the extent and nature of stocks’ overlap with fishing activities (proportion of time spent 
within management zones, exchange rates, depth preferences, etc.). All analyses and data 
manipulations were conducted in the statistical package R (R Development CoreTeam 2014).  

3.1.2.1 Residence 

Presence/absence timeline-plots were constructed to assess periods of residence/occupancy 
within and between receiver arrays, identify any evidence of regular coordinated movements 
between areas and evaluate variation in these measures between individuals and throughout 
the study period. For each individual, daily detections by one or more receivers within an 
array were plotted as a single detection event to show daily presence in an array and the 
recorded size at tagging was used to infer the stage of maturity (mature or immature) based on 
published information on each species’ size at 50% maturity based on Braccini et al. (2015) 
and references therein. Daily presence was colour-coded to indicate the receiver array where 
detections were recorded, and to indicate whether the individual was tagged in the north or 
south of the state. 

3.1.2.2 Spatial detection patterns 

Bubble plots were constructed to graphically display species’ overlap and area use. For each 
species, the size of the bubble represents Pr, i.e. the proportion of detections by receiver r , 
which was calculated as 

,

,

n r
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n r

r n
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where hitsn,r is the total number of detections from detected individual n in receiver r. For 
clarity, separate bubble plots are shown for the different arrays.  

3.1.2.3 Rates of movement 

As the configuration of the receiver arrays used in the current study was not designed to identify 
the precise position of tagged sharks within individual receivers’ detection range (generally 
assumed to be 400‒500m), movements were considered to be between receiver locations of 
consecutive tag detections (i.e. the centre of each receiver’s detection range). Thus, over short 
distances (i.e. within arrays), movement (or displacement) distances were calculated as the 
minimum straight-line distance between two receivers. Over longer distances, displacement 
trajectories were forced around arbitrary turning points (off North West Cape, Shark Bay and 
Cape Leeuwin) to minimise biases associated with reconstructing straight-line movement 
trajectories across land. An example of the reconstructed trajectory is shown in Figure 2. For 
each displacement, a constant Rate of Movement (ROM) was calculated as the minimum 
displacement distance divided by the time between consecutive detections. 
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3.1.2.4 Daily patterns and co-detections 

Daily patterns were studied by plotting the proportion of detections by hour for each array and 
aggregating the observations from all detected sharks by all receivers. Co-detections of 
different individuals of the same and of different species were studied by calculating the 
number of individuals that were detected by the same receiver at the same date and hour.  

Where sharks moved between arrays, ROM estimates were used to estimate the proportional 
amount of time that sharks spent within the different management areas (zones, open and 
closed areas), between detections and quantification of movement rates between adjacent and 
non-adjacent zones. As the precise position of a detected shark within a receiver’s detection 
range is unknown and to reduce the bias caused by sharks being detected near the detection 
boundary of two closely positioned receivers, ROM estimates based on displacements of less 
than one hour duration were excluded from analyses. For example, if a shark was detected 
near the edge of a receiver’s detection range before moving a short distance (e.g. 100‒200m) 
to be detected within the proximal detection range of a second receiver, its estimated ROM 
would be artificially exaggerated. Different scales of observation were considered to detect 
possible difference in movement behaviour (e.g. more random movement at a smaller scale vs 
more directed movement at a larger scale). Hence, ROM was calculated for detections ≤ 
10km, > 10km, ≤ 50km and > 50km. 

 

Figure 2.  Example of an interpolated displacement trajectory (black dots) for a tagged dusky shark 
(DS.87) through different fishery management areas, between the release location (red 
dot) and detection locations (green dots).WANCSF: WA North Coast Shark Fishery; 
WCDGDLF: West Coast Demersal Gillnet and Demersal Longline (Interim) Managed 
Fishery; JASDFDLF: Joint Authority Southern Demersal Gillnet and Demersal Longline 
Managed Fishery 
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3.1.2.5 Proportion of time per area 

The proportional amount of time per area was calculated as the ratio of time spent in a 
defined area over the monitored period (i.e. between release and last detection). The 
reconstructed trajectories (e.g. Figure 2) were used to quantify the time spent in each area. As 
this analysis assumes straight-line movement between consecutive detections, sharks detected 
within an array, then not detected for a period of time before being re-detected within the 
same array, are assumed to have remained within that area. 

3.1.2.6 Seasonal migration of dusky sharks 

Migration was quantified for each sex separately using a sigmoidal Bayesian model fitted in 
JAGS (Plummer 2003), using the equation 

 
 

, , , 1
l s s

l s m s m tP e
 

 


    
where Pl,s,m is the proportion of sharks of length l and sex s detected in the Ningaloo Reef 
array in month m; αs,m is the maximum proportion migrating;  βs is the estimated length at 
which 50% of αs,m sharks migrate;  φs is the predicted rate of change (slope) in sharks’ growth 
increments and was used to define the probability that a shark would or would not migrate; 
and τt  is a random effect of shark t, used to account for multiple observations being derived 
from the same individuals. βs and φs varied between sexes but not between months since we 
considered it unlikely that the size at which sharks migrated would change markedly between 
months. Data were pooled to one record per individual per month. If an individual was 
detected at Ningaloo Reef in a month, it was considered to have migrated (assigned a 
response value of 1), whereas if all detections for that shark in that month were recorded to 
the south of Ningaloo, it was considered not to have migrated (assigned a response value of 
0). This included the original tagging observation, i.e. if a shark was tagged in the north it was 
considered to have migrated in that month. For each sex the model was run with 2,000,000 
iterations, three chains and a thinning rate of 5. The models achieved good mixing between 
chains and the Gelman-Rubin statistics indicated model convergence. For both models, the 
standard deviation associated with the random effects was relatively small when compared to 
those from the other model terms. This indicated that individual sharks displayed unique 
behaviour, which therefore did not have to be accounted for in the model. Therefore, the 
random effects were removed. 

3.1.2.7 Exchange rates of gummy and whiskery sharks 

Exchange rates of gummy and whiskery sharks between management zones (Figure 3) were 
quantified using an individual based model fitted to conventional tagging generated by 
previous FRDC projects (Simpfendorfer et al. 1996; Walker et al. 2000) and to the acoustic 
tagging data collected in this project.  

For conventional tag data, movement parameters were estimated based on release and 
recaptures only. By conditioning the analysis only on recaptures, the typical difficulties for 
conventional tagging studies of tag non-reporting, tag shedding, and the effect of natural and 
fishing mortality are minimized, as the models are not fitted to the numbers released but to 
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numbers recaptured (McGarvey and Feenstra 2002).  An individual-based model was 
therefore constructed to calculate the probability of recapturing a shark in a given zone and 
time considering the time this individual was at liberty. 

For the conventional tagging data, a movement transition matrix, , which represents the 
probability of moving from one zone to another zone, was constructed as 

11 12 13

21 22 23

31 32 33

p p p
p p p
p p p

 
 

 
 
 
   

where each element ijp  represents the probability of moving from zone i  to zone j , with 

zones 1, 2, and 3 representing the ‘West Coast’, ‘Zone 1’ and ‘Zone 2’ management zones, 
respectively. Note that each row sums to one. 

Based on   and the time at liberty t, n  was defined as the product matrix taking   and 

multiplying it by itself t-times. Then, the predicted probability of recapture zone and time ( ˆ ijp ) 

was extracted from the i  row and column corresponding to the release and recapture zone. 

Very few gummy sharks were released in the West Coast so the movement rates for 
individuals released in the West Coast could not be estimated. Hence, as neither the West 
Coast nor Zone 1 are not core habitat areas for this species (Simpfendorfer et al. 1996),  
movement rates from the West Coast were set equal to the movement rates of sharks released 
in Zone 1. An annual time step was used for the analysis of conventional tags. 

A similar approach was adopted for the acoustic tagging information obtained from the 
network of acoustic receivers. Unlike most conventional tagging studies, where tagged 
individuals are released and recaptured only once, acoustic monitoring allows the detection of 
tagged individuals multiple times. In such a case, tagged sharks could be modelled as random 
effects to remove the natural variability in movement among individuals. Initially, this was 
attempted but due to the limited data set and the small proportion of tagged sharks with 
detections over multiple days the models failed to converge. Hence, rather than fitting each 
shark as a random effect, the contribution of each shark to the likelihood was down-weighted 
by the number of observations per shark.  

A daily time step was used for the analysis of acoustic tagging data (acous) so the movement 
transition matrix, acous , of species s was constructed as 

11 11

22 22 22

33 33

1 0
0.5(1 ) 0.5(1 )

0 1
acous

p p
p p p

p p

 
 

   
 
    

The 13p and 31p elements were set to 0 as it is highly unlikely that a shark moves to a non-
adjacent zone in 1 day. 



 

Fisheries Research Report [Western Australia] No. 282, 2017   15 

For the West Coast receivers, there were no or very few detections of whiskery and gummy 
sharks. Hence, for whiskery sharks 11p was set equal to 33p  as the West Coast and Zone 2 are 

not core habitat areas for this species, whereas for gummy sharks 11p was set equal to 22p  as the 
West Coast and Zone 1 are not core habitat areas for this species (Simpfendorfer et al. 1996). 

To estimate the movement parameters, the model was fitted to the conventional and acoustic 
tagging data by minimizing an overall objective function,  , which contains three terms 

1 2 penTag      
where 1  and 2  are the negative log-likelihoods for the conventional and acoustic tagging 

data, respectively; and penTag is a penalty used to maintain all ijp parameters between 0 and 1. 

1 and 2 are calculated as 

1 ,ˆconv ij
n

p  
 ; 

2 ,ˆacous ij
n

p  
 

 where ,ˆconv ijp and ,ˆacous ijp are the predicted recapture probabilities for individuals tagged with 

conventional or acoustic tags, respectively. 

 

Figure 3.  Map showing the location of receivers (red dots), management zones and fishing blocks 
(1° by 1°)  
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3.2 Catch and effort standardisation 

Catch and effort data from the TDGDLF were standardised in the following three steps. Firstly, 
catch and effort data from targeted shark demersal gillnet and demersal longline fishing in 
waters of the TDGDLF were identified in statutory fishing return records. These data were then 
validated and corrected to account for known historical reporting problems following agreed 
business rules for improving data quality (see Simpfendorfer et al. 2000b; McAuley et al. 2005). 
Second, using the improved statistics, catch and effort data were standardised using the best 
model and error structures. Finally, procedures to impute “missing” observations (e.g. from 
normal variability or shifts in the distribution of fishing effort, the metropolitan closure in 2007 
and the whiskery shark pupping closure west of Albany between 2006 and 2014, McAuley et 
al., 2015) were used to construct standardised CPUE time series for calibrating models 
representing gummy and whiskery shark stock dynamics.  

3.2.1 Data collection 

Information on catch (species weight in kg) and effort (gear type and quantity, number of days 
fished, number of shots per day and hours fished) was obtained from statutory fishing return 
records, which were reported monthly by 1 degree spatial blocks between 1975 and 2006 and 
reported at a daily frequency by a combination of 10 minute spatial blocks and GPS 
coordinates, since 2006. As licensing information is only available for the TDGDLF from 
1988 onwards, catch and effort data relating to previous targeted shark fishing with demersal 
gillnets and demersal longlines within the waters of the TDGDLF, were instead defined 
according to fishing method (gillnet and longline only) and area of operation (between 26°S 
latitude and the Western-South Australian border). To avoid inclusion of records from small 
mesh gillnets that are/were used in nearshore and estuarine waters off the South and West 
coasts to target teleost species (e.g. Australian herring, Arripis georgianus), data from 
estuarine blocks and for records derived from net lengths of less than 100m were excluded 
from the dataset. This filtering also effectively removed other misreported non-‘shark fishery’ 
netting methods (e.g. haul nets, beach seines and throw nets). 

3.2.1.1 Correction of catch data 

3.2.1.1.1 Monthly catch returns 

When FRDC-funded research into the status of WA’s shark stocks began in 1993, the accuracy 
of catch records was examined and data from before 1989/90 were determined to be incomplete.  
Problems were also found with species identification in some vessels’ returns, in particular 
where the reported catch of sharks was not identified to species level (e.g. records where all 
catches were reported as a single species or as unidentified species, ‘shark, other’, Figure 4).   
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Figure 4.  Illustration of shark catch and effort records by financial year. Bars show the percentage 
of total annual catch by major species  

To overcome these problems, business rules (Figure 5) were developed to adjust catch (and 
effort) data from years where records were missing and to reapportion the shark catch from 
returns that were judged to be inadequately reported (Simpfendorfer and Donohue, 1998; 
Simpfendorfer et al., 2000b). These procedures were refined in 2003 to account for improved 
species identification and reporting in recent years and to allow for historical but regionally-
specific catch characteristics, e.g. increased targeting of sandbar sharks in the WCDGDLF 
and high school shark and dogfish catches in Zone 2 of the JASDGDLF in earlier years 
(McAuley et al., 2005). 

To amend misreported catch return data, vessels were classified as either ‘good reporters’ (i.e. 
providers of accurate catch information) or ‘bad reporters’ (i.e. providers of inaccurate catch 
information) following  Simpfendorfer et al. (2000b). Catches from bad-reporting vessels 
were re-apportioned by multiplying the reported total shark catch by the mean proportion of 
individual species in records from good reporting vessels operating within the same Year-
Month-Spatial Block (YMB). If good-reporter records were not available for a particular 
YMB, the mean proportion of species, for the same Year-Month-Management Zone (YMZ) 
was used. In the small number of cases where comparative YMZ fishing records were not 
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available, the mean proportion of that species in records for the same year-month throughout 
the entire area of the fisheries was used. Catch records from vessels engaged in specific 
historical-targeting behaviours [e.g. dogfish/gulper sharks on the continental slope off 
Esperance in the early 1990s (Daley et al., 2002) and school sharks in the far-eastern part of 
Zone 2 during the 1980s and 1990s (Simpfendorfer and Donohue, 1998; Walker et al., 
2001)], did not conform to these rules and these were therefore, excluded from this process. 

Apart from those exclusions, these business rules were designed to systematically reflect the 
seasonal and regional variability and differences in the composition of TDGDLF catches of 
the fisheries’ four principal target species. For dusky, whiskery and gummy sharks, ‘bad 
reporters’ were vessels which, within a year-month-block, reported: (i) ALL shark catch as 
‘sharks, other’; (ii) NO dusky or whiskery shark catches when fishing between 26° and 32° S 
and West of 125° E; (iii) NO or exactly equal proportions of dusky, whiskery and gummy 
shark catches South of 32° S and West of 125° E; (iv) NO gummy or school sharks when 
fishing East of 125° E. For sandbar sharks, ‘bad reporters’ were vessels that did not report any 
sandbar sharks when fishing South of 26° S and West of 118° E within a year after 1984, 
when sandbar sharks were allocated a logbook code. In all, 20% of monthly catch returns 
records were amended according to these rules. 

Catch (and effort) records were also adjusted to account for missing and incomplete returns 
prior to 1990.  Previously, catch and effort had been increased by 25% in 1986, 35% in 1987, 
and by 5% in all other years up to and including 1989/90, after which records are thought to 
be complete.  However, it was subsequently determined (and confirmed by numerous 
industry-members from the time), that catches may also have been over-reported during the 
mid-1980s by fishers trying to demonstrate use of the stocks in order to secure their continued 
access under the JASDGDLF management plan, introduced in 1988. Thus, it was determined 
that the 25% and 35% corrections previously applied to those years’ data were not applicable 
and to account for missing data, all catch (and effort) data prior to 1990 have instead been 
increased by a standard 5% per year. 
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Figure 5.  Flowchart of processes and business rules applied for verifying and correcting the catch 
and effort statistics used in the catch rate standardisations 

3.2.1.1.2 Daily logbooks 

The transition from monthly to daily reporting mechanisms proved problematic and a number of 
errors were identified in the first 3 years’ of daily logbook data. Missing, misreported and 
confounded catches from this period were first recovered or corrected using fishers’ personal 
records, fish processor returns, face to face and phone interviews with fishers. Since that initial 
catch reconstruction exercise, daily catch records appear to have been more completely and 



20   Fisheries Research Report [Western Australia] No. 282, 2017 

accurately recorded. Occasional errors and data omissions are still encountered but these are 
generally rectified at the time of submission or data-entry. For a very small number of records 
(mainly small quantities of minor catch components), missing catches could not be reconstructed 
from fishers’ own records or recollections. In those cases, catch weights were estimated from the 
recorded number of fish (required information in daily logbook returns), and (in hierarchical 
order): the average weight of that species in good reporting vessels’ records from the same YMB, 
YMZ or year-month was used. If none of these average weights were available, the mean weight 
of that species was estimated from the mean size of observed catches from the fisheries (McAuley 
and Simpfendorfer 2003) and an appropriate length-weight relationship. 

3.2.1.2 Correction of effort data 

Several problems have also been identified with reported gillnet fishing effort variables; 
including misreporting and non-reporting of the number of shots per day, net length, hours 
fished per day, and days fished per month (Figure 6). To address inaccurate or incomplete 
effort data, the data reported in (monthly and daily) fishing returns were corrected according 
to the following rules.  

3.2.1.2.1 Monthly effort returns 

A record was defined as invalid if hours fished was 0, incomplete or >24 h; or if net length 
was 0, incomplete or >12000 m; or if number of shots per day was 0, incomplete or >3; or if 
number of days fished per month was 0, incomplete or >31 days. For these records, the 
invalid effort variable was replaced by (i) the vessel’s annual mean (excluding invalid 
records) was used; and (ii) if this was not available, the year-month-zone mean value 
(excluding invalid records) of the remainder of the fleet was used.  

3.2.1.2.2 Daily logbooks 

Missing records from the period 2006-2009 were re-constructed from fishers’ personal 
records, processor returns, and interviews. The same rules used for defining invalid effort 
variables and for amending the monthly catch return data set were applied to the effort 
variables reported in daily logbooks. 

For both data sets,  <1% of the net length, days fished per month and hours fished per day, 
and 9% of the number of shots per day were amended. Fixing inaccurate catch and effort 
records is required for quantifying total annual catch and effort. However, catch and effort 
standardisations were done using only the ‘good’ records (Figure 5). 
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Figure 6.  Illustration of the shark catch and effort records by financial year. The barplots show the 
percentage of records with erroneous (in black) (a) days fished per month, (b) hours 
fished per day, (c) shots per fishing day, and (d) net length 

3.2.2 Quantification of corrected effort data 

As TDGDLF vessels have predominantly used demersally-set gillnets of between 16.5cm and 
17.8cm (6.5‒7”, stretched) mesh-size (>86% of records), the historically small and 
diminishing number of demersal longline records were not included in following analyses. 
Fishing effort was defined as the product of the net length used per day and the number of 
days fished per month. All effort values reported herein are expressed in units of kilometre 
gillnet days (km.gn.d), unless specified otherwise.  

Due to the overlapping but differing distributions of the four study species within the 
fisheries, ‘effective area’ catches and fishing effort were defined according to where each 
species commonly occurs in the catch (Braccini et al. 2014). These effective areas were:  

 South of latitude 28°S and East to longitude 129°E for whiskery sharks;  

 Between longitudes 116°E and 129°E off the South coast for gummy sharks;  

 South of latitude 28°S and East to longitude 120°E for dusky sharks; and 

 Between latitudes 26°S and 30°S for sandbar sharks. 
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Effective area effort was adjusted by 2% y-1 for all years prior to 1994/1995 to account for 
increases in fishing efficiency due to technological advancements, e.g. increased vessel 
size/range, GPS plotter/sounders, monofilament nets and improved fishing knowledge 
(Simpfendorfer et al. 1999, McAuley, 2005). As most significant developments in vessels, 
gear and fishing behaviour had ceased by the mid-1990s, a constant efficiency factor has been 
applied to records since. 

3.2.3 Distribution of TDGDLF gillnet effort 

To investigate potential biases in Catch Per Unit Effort (CPUE) trends derived from fishery-
dependent catch and effort data, the spatial distribution of TDGDLF demersal gillnet fishing 
effort was estimated by 1 degree reporting blocks (Figure 3). The number of blocks from 
which monthly-reported fishing effort (1975‒2006) was reported, increased from 28 in 
1975‒76 to 58 in 1992‒93, before stabilising at <50 during the latter years of the time-series 
(Figure 7). The number of active fishing vessels concurrently increased from 74 in 1975‒76 
to 172 in 1985‒86, before declining to 31 in 2006 (McAuley, 2008, Figure 7).  Nominal 
demersal gillnet fishing effort peaked at 38,695 km.gn.d during the early 1990s and has 
trended downwards since (Braccini et al. 2014). Since the introduction of daily logbook 
reporting and a new hourly effort management system in 2006, the level of nominal demersal 
gillnet effort declined to between 9,037 and 11,373 km.gn.d per year. During this time, the 
number of blocks from which fishing effort has been reported has remained at between 40 
and 50 and the number of vessels reporting activity in the TDGDLF has declined from 25 in 
2006‒07 to 20 in 2013‒14. 

As the distribution of reported fishing effort has been dynamic across a large geographic 
range for the last 40+ years, although is generally characterised by an early expansion and 
slight subsequent contraction (Figure 7), time-series of data from many spatial blocks are 
truncated. Furthermore, the contraction in TDGDLF fleet-size and imposition of spatial and 
seasonal restrictions on fishing have led to ‘gaps’ in the available time-series data reported 
from many spatial blocks. Because these characteristics are recognised as being among those 
that can lead to biases in abundance indices derived from fishery-dependent data, some 
authors have argued that missing time-area observations should be imputed (Walters 2003; 
Carruthers et al. 2010, 2011). 
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Figure 7.  Spatial distribution and density of the Temperate Demersal Gillnet and Demersal 
Longline Fisheries gillnet effort by five financial year intervals. Top left panel shows the 
number of blocks fished (black dots) and active fishing vessels (grey dots) by financial 
year; maps show the distribution of the fisheries’ total corrected nominal effort (km.gn.d) 
for each period 

In total (i.e. 1975‒2014), catch has been reported in 67, 42, 40, and 38 spatial blocks by 512, 
184, 488, and 272 fishing vessels, within the effective fishing areas for whiskery, gummy, 
dusky and sandbar sharks, respectively. However, the rapid cumulative increase in catch and 
number of records per block and fishing vessels (Figure 8) indicates that shark catches were 
negligible and infrequent for some blocks and for many fishing vessels. 
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Figure 8.  Cumulative total catch (upper panels) and cumulative number of records (lower panels) 
against number of fished block and number of vessels fishing, and the number of records 
per vessel (inset) 

3.2.4 Construction of standardised CPUE time series  

Current abundance indicators used for stock assessment of gummy and whiskery sharks are 
based on nominal catch rates calculated as the ratio of total annual catch and total effort. 
Hence, new CPUE indices were constructed based on statistical standardisation of 
commercial catch and effort data.  

To account for a two month closure of the fishery west of 118° E between 2006 and 2014 
(mid-August to mid-October) and the closure of metropolitan fishing grounds (between 31° 
and 33°S) in November 2007, catch and effort data from the TDGDLF were previously 
excluded from estimation of the CPUE trends that are used to infer stock status (Braccini et 
al. 2014). However, because exclusion of these data can lead to the loss of important 
information about trends in stock abundance, an alternative imputational approach to 
standardising catch and effort data, was developed. 

Because the boundary between Zone 1 and Zone 2 (116⁰ 30’E) lies in the middle of blocks 
bounded by longitudes 116⁰E and 117⁰E (Figure 3) and some of the fishing vessels operating 
in those blocks were licenced to fish in both Zone 1 and Zone 2 areas of those blocks, it was 
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not possible to accurately allocate catch and effort data from these blocks to each of the 
overlapping zones. However, as most of the effort in the three blocks overlapping this 
boundary was known to have been applied by Zone 1 vessels, all data were arbitrarily 
assigned to Zone 1 for the purposes of subsequent analyses and standardisation. For each 
species, blocks that accounted for 90% of the catch reported in ‘good’ records were selected. 
This reduced the number of blocks available for modelling of catch and effort (Table 1). 

In an attempt to reduce the effects of vessels targeting other species, CPUE standardisation 
was based on catch and effort data from ‘indicative’ vessels, which were selected from the 
‘good’ records for each of the four study species, based upon having: 1) at least 10 records of 
that species and 2) reported catch of that species within at least five years. From these vessels, 
we selected those that accounted for the top 90% of the annual TDGDLF catch of the species. 
For sandbar sharks, financial years prior to 1988/89 were removed from the analysis as none 
of the vessels reporting catch during these years met the selection criteria (prior to the early 
1990s, the species was rarely targeted, of low value and was only given a unique reporting 
code in 1985/86). Indicative vessels’ catch and effort data were standardised using 
Generalized Linear Models (GLMs). The response variable was the logged catch and the 
logged effort was modelled as an offset. Candidate explanatory variables included available 
seasonal (year and month), spatial (block) and available environmental (Southern Oscillation 
Index and Mean Fremantle Sea Level) terms. The catch of other shark species was also 
considered as a covariate proxy for fishers’ targeting behaviour (Table 1).  

Table 1.  Model terms considered in the Generalized Linear Models 

Component Type Acronym Levels 

Financial year (July-June) Factor Yr 1975‒2013 

Spatial block Factor Block 26 (whiskery shark) 

18 (gummy shark) 

14 (dusky shark) 

6 (sandbar shark) 

Month Factor Mn 1‒12 

Vessel Factor Ves 84 (whiskery shark) 

40 (gummy shark) 

76 (dusky shark) 

8 (sandbar shark) 

Catch of whiskery sharks Variate Whiskery_c Continuous 

Catch of gummy sharks Variate Gummy_c Continuous 

Catch of dusky sharks Variate Dusky_c Continuous 

Catch of sandbar sharks Variate Sandbar_c Continuous 

Southern Oscillation index Variate SOI Continuous 

Mean Freemantle sea level Variate MFS Continuous 

Effort Variate (offset) km.gn.d Continuous  
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Exploratory analyses showed that the continuous covariates considered had low levels of 
correlation. For the monthly returns and the monthly-aggregated daily logbook data, most of 
the single species catches from indicative vessels were reported to be less than one tonne 
(Figure 9). Also, as the proportion of records with 0 catches ranged from relatively small 
(0.03 for dusky sharks) to moderately high (0.22 for sandbar sharks) (Figure 9), a two-
component model was used for batch analysis. The probability of a positive record was 
modelled using a binomial GLM and the catch of the positive records was modelled using 
lognormal and gamma distributions. 

 

Figure 9.  Distributions of catch records used in catch and effort standardisations. Bars show the 
ranges of positive monthly catches. The inset figures show the annual proportions of 
records with and without catch. 

The explanatory variables included in the models were defined using a stepwise forward 
selection of candidate variables based on improving the Akaike Information Criterion (AIC) 
until the percentage of deviance explained was <2%. The interaction between ‘financial year’ 
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and ‘spatial block’ is needed to capture the effect of catch rates in different parts of the fishery 
changing at different rates over the history of the fishery (Punt et al. 2000). In addition, this 
interaction is required for filling in missing time‒area observations. For the probability of a 
positive record, no interactions were considered due to a lack of contrast between the 
presences/absence of catch for the ‘financial year’ and ‘spatial block’ combinations (i.e. 
financial year‒spatial blocks with no 0 catch records). For each species, model diagnostics 
were used to evaluate the performance of the distributions fitted to the positive records and 
hence select the best error structure. All statistical analysis were coded in the statistical 
package R (R Development CoreTeam 2014). 

Given that multiple year‒block combinations were missing (23%, 26%, 17% and 30% for 
whiskery, gummy, dusky and sandbar sharks, respectively, Figure 10), imputation was 
required for constructing standardised CPUE series. Hence, the GLM predictions, imputation 
of missing financial year‒spatial blocks, and quantification of uncertainty through 
bootstrapping were integrated into the catch and effort standardisation (as per Carruthers et al. 
2011 and Marriot et al. 2014). 

Figure 10.  Temporal distribution of imputed spatial blocks for each species. White shading indicates 
no imputation. Imputed blocks are shaded according to the values used for replacing the 
missing value. Darker shades correspond to higher coefficient values 

The imputation of missing year‒block coefficients extends the algorithms of Carruthers et al. 
(2011) and Punt et al. (2000), which combined nearest-neighbour and mean imputation 
approaches. For blocks with missing coefficients prior to fishing, the block average of the 
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first three years was used. For blocks with missing coefficients between years with 
coefficients, a linear interpolation between the years with coefficients before and after was 
used. For blocks with missing coefficients after fishing, rather than setting the missing values 
at the last coefficient (Walters, 2003; Carruthers et al. 2011), a linear model was fitted to the 
last 10 years for which coefficients could be estimated. If the model slope was negative, we 
imputed the missing coefficient values from a linear model with constant set at the coefficient 
value for the last year with observations and slope set at the population intrinsic growth rate, 
derived from demography. If the model slope was positive, we imputed missing coefficient 
values using the linear model. The linear-model imputation was adopted because without 
fishing (hence the reason for the missing records) the population is expected to increase. 

Following Punt et al. (2000) and recommendations by Campbell (2015), the standardised 
CPUE series was constructed using the formula: 

,y b y b
b

I A I   

where Iy is the index for year y; Ab is the size of the available area of spatial block b (set at 
200 m for whiskery, dusky and sandbar sharks, and at 100 for gummy sharks); and Iy,b is the 
standardised index for year y and spatial block b. The value for Iy,b was calculated as: 

, , ,y b y b y bI    

where υy,b is the probability of a non-zero catch in spatial block b during year y; and αy,b  is 
the catch in spatial block b during year y for positive records. 

Standardised catch predictions were obtained using the ‘predict’ function included in the R 
base packages. To extract the υy,b and αy,b  coefficients, we set continuous explanatory 
variables  to their means, and categorical variables to an average over all values, weighted by 
the relative frequency of each value (Maunder and Punt 2004). (NB setting categorical 
variables to their most common value in the data—another common approach—yielded the 
same trends).  

Precision of standardised CPUE series, which is required for stock assessments when CPUE is 
used to indicate relative abundance, was quantified using bootstrapping. First, the residuals from 
the optimum fit were resampled and combined with the model predictions to generate  new 
bootstrap samples of the observed time-series (Haddon 2001). Next, the GLM models were 
fitted to these bootstrapped data to obtain new estimates of model coefficients. Finally, missing 
year‒block coefficients were imputed and the time series was constructed. This process was 
repeated 1,000 times to calculate 95% confidence intervals (2.5th and 97.5th percentiles).  

3.3 Population dynamics of whiskery and gummy sharks 

The model used as the base case is a size-based sex-structured spatial model. Simpler 
biomass dynamics, size-based and age-structured models of different degrees of complexity 
were used as sensitivity tests (Table 8 and Table 9). All models were conditioned on total 
annual catch because there is no evidence that the reported effort data are more accurate than 
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the reported catch data. The compilation of data used in the stock assessments, the description 
of the assessment models and the sensitivity tests conducted are explained below. 

3.3.1 Available data 

3.3.1.1 Commercial catch 

Sharks have been commercially harvested in Western Australian waters for nearly 70 years, 
thus the harvest process has a relatively long history of development. Whiskery, gummy, 
dusky and sandbar sharks are the most important species in terms of landings. Up until 
recently, the Northern Shark Fisheries (NSF) also caught substantial quantities of sandbar 
sharks and lesser but poorly-documented quantities of dusky sharks.  

The TDGDLF comprises the JASDGDLF and the WCDGDLF, which operate in continental 
shelf waters along the south and lower west coasts, respectively. The majority of operators 
employ demersal gillnets and power-hauled reels to target sharks, with scalefish (teleosts) 
also being a legitimate component of retained catch. Demersal longlines are also a permitted 
method of fishing but are not widely used. On the south coast, operators primarily target 
gummy and dusky sharks, while dusky and sandbar sharks are targeted on the west coast. 
Whiskery sharks are an important component of the catch for both fisheries. Catch and effort 
records for what became known as the TDGDLF, have been collected since 1975. Although 
sharks are known to have been commercially-targeted prior to the introduction of mandatory 
fishing returns, those catches and associated fishing effort were considered to be relatively 
low. Therefore, for the purpose of stock assessments, the TDGDLF shark catch comprises 
gillnet and longline catches reported from vessels operating south of 26°S and outside 
estuarine blocks since 1975.   

Reported catches of gummy shark in the West coast and part of Zone 1 have been confounded 
by catches of grey and whitespot gummy sharks. To remove the catches of these two minor 
species, catches of gummy shark in the West coast and Zone 1 were validated and corrected 
according to the monthly catch data correction methods described above (see Correction of 

catch data) and multiplied by the proportion of gummy sharks (0.95) observed during 
onboard research programs between 1993 and 2004 (McAuley and Simpfendorfer, 2003; 
McAuley et al., 2005). The reported catches of whiskery and gummy shark in the TDGDLF 
are shown in Figure 11 and Figure 12, respectively. 

The NSF comprises the State-managed WA North Coast Shark Fishery (WANCSF) in the 
Pilbara and western Kimberley and the Joint Authority Northern Shark Fishery (JANSF) in 
the eastern Kimberley. Given confidentiality requirements resulting from the small number of 
operators in the fisheries and their presumed operation on the same functional stocks, the two 
fisheries have been considered as a single fishery for reporting purposes. The primary fishing 
method employed in these fisheries was demersal longlining with a relatively small and 
sporadic amount of pelagic gillnetting in the JANSF. Since fishing commenced in 1994, NSF 
operators targeted various species, including sandbar, blacktip (Carcharhinus spp.), spot-tail 
(Carcharhinus sorrah), tiger (Galeocerdo cuvier), hammerhead (Family Sphyrnidae) and 
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lemon (Negaprion acutidens ) sharks. However, there has been no reported fishing activity in 
the NSF since April 2009 (Molony et al. 2013). 

Before the State-wide commercial protection of sharks and rays in November 20072, other 
Western Australian commercial fisheries either reported catches of whiskery, gummy, dusky 
and sandbar sharks or simply reported shark catches as ‘sharks, other’. A proportion of these 
undifferentiated catches were likely to have included whiskery, gummy, dusky and/or sandbar 
sharks. Hence, records reported as ‘sharks, other’ south of 26⁰ S using methods other than 
gillnets or longlines were reapportioned based on the TDGDLF proportion of whiskery, 
gummy, dusky and sandbar sharks by fishing year and bioregion. Further, retention of whaler 
sharks with Inter Dorsal fin Lengths over 70 cm (approximating to 2.0 m Total Length; TL, 
C. obscurus) by all commercial (and recreational) fishers in South Coast and West Coast 
Bioregions was prohibited in 2007 in WA. As commercial fishers are not legally required to 
report discarded catches in WA, catches of commercially protected and ‘over-sized’ sharks, 
post-2007 shark bycatch could not be quantified. However, prior to 2007, reported catches of 
over-sized dusky sharks in the TDGDLF and bycatch of whiskery or gummy sharks in non-
target commercial fisheries were minimal (Figure 11 and Figure 12, respectively). Therefore, 
these minor catches were merged with TDGDLF catches for assessment purposes. 

Gummy and whiskery sharks are also caught in commercial fisheries beyond WA boundaries. 
Although gummy sharks form a single stock in southern Australia (MacDonald 1988; 
Gardner and Ward 2000), conventional tagging experiments suggest very low mixing 
between regions with only 3% of tagged females moving from WA to SA and 9% moving 
from SA to WA annually. For these reason, the population is divided in a number of sub-
stocks for assessment purposes (Walker et al. 2000; Walker 2010) and catches of gummy 
sharks outside WA boundaries were not considered in the current assessment. Similarly, 
whiskery sharks also show limited movement with a very small proportion of individuals 
tagged in WA being recovered outside state boundaries (Simpfendorfer et al. 1999). Hence, 
catches of whiskery sharks outside WA were not considered in the current assessment.  

3.3.1.2 Recreational catch 

Sharks are not generally targeted by recreational fishers in WA. An integrated survey of boat-
based recreational fishing in WA during 2011-12 provides an estimate of the total annual 
catch of sharks by recreational fishing vessels and also indicates that state-wide retention 
rates of sharks are only 17% (Ryan et al. 2013). It should be noted that these estimates do not 
include shore-based recreational fishing catches, which anecdotally may be significant in 
comparison to boat-based catches in some areas. To reconstruct a recreational catch series the 
following steps were undertaken. First, for species in the west and south coast bioregions the 
2011-12 catch, in weight, was obtained by multiplying an average live weight of 5 kg by the 
number of individuals retained plus the number discarded multiplied by an arbitrary Post 

                                                 

2 The TDGDLF, NSF and small number of other non-target fisheries are excepted from this regulation.  
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Capture Mortality (PCM) rate of 0.25. As recreational whaler shark catch data are generally 
not identified to individual species, it was assumed that all whaler sharks caught in the west 
and south coasts were dusky sharks. Then, the 2011-12 catch values were multiplied by a 
time-series of the WA annual population size between 1975 and 2014 (www.abs.gov.au) and 
the rate of participation in recreational fishing reported by Ryan et al. (2013). The 
reconstructed catch series of whiskery and gummy sharks are shown in Figure 11 and Figure 
12, respectively. 

 

Figure 11.  Whiskery shark catches used in the models 
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Figure 12. Gummy shark catches used in the models 

3.3.1.3 Standardised catch rates 

The standardised catch rate series constructed in 3.2 Catch and effort standardisation were 
used to calibrate the assessment models. However due to unresolved differences in how 
fishing effort data were reported in monthly (1975-2006) and daily (>2006) returns, these two 
time-series of data are currently considered incompatible and are therefore unsuitable as 
indices of stock abundance. Thus the model outputs reported below should not be considered 
as a stock assessment. 

3.3.1.4 Acoustic tagging 

For the base case, the exchange rates among management zones estimated in 3.1.2.7 

Exchange rates, were used to parametrise the movement transition matrix required for 
incorporating movement into the spatial model.  

3.3.1.6 Catch size composition 

Size compositions of TDGDLF catches were originally reported by McAuley and 
Simpfendorfer (2003). In this study, we used those data in addition to information collected in 
more recent years.  Sharks were sampled between 1993 and 2013 on-board fishing vessels 
operating in the TDGDLF. For each gear deployment, the date, time, GPS location and 
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bottom depth (in m) were recorded. Upon retrieval, all individuals were identified to species 
level and their fork lengths (FL) were measured (in cm) by scientific observers [for a detailed 
description of the sampling design refer to McAuley and Simpfendorfer (2003)]. Years with 
less than 10 observations and shots per zone were excluded ( 

Table 2 and Table 3 for whiskery sharks; Table 4 and Table 5 for gummy sharks). The catch 
size composition (5 cm length bins) of whiskery and gummy sharks are shown in (Figure 13) 
and (Figure 14), respectively.  

The size-based models used 5-cm bin size classes, ranging between 0 cm and 150% of the 
maximum reported total length, Lmax, to account for larger individuals than the maximum 
reported and to avoid accumulation of individuals in the last size class. 

 

Figure 13.  Observed whiskery shark (sexes combined) size composition (as an annual proportion) 
from the Temperate Demersal Gillnet and Demersal Longline Fisheries (16.5cm and 
17.8cm mesh) 
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Figure 14.  Observed gummy shark (sexes combined) size composition (as an annual proportion) 
from the Temperate Demersal Gillnet and Demersal Longline Fisheries (16.5cm and 
17.8cm mesh) 

Table 2.  Annual number of observations used to derive the size composition of whiskery sharks in 
the Temperate Demersal Gillnet and Demersal Longline Fisheries 

Zone 93-94 94-95 95-96 96-97 97-98 98-99 00-01 01-02 02-03 04-05 05-06 06-07 12-13 

WC 56 296 180 365 176  629 463 172 211    

Zone1 128 337 370 367 887 258   36  204 146 183 

Zone2 64 228 209 76 104 118        

Total 248 861 759 808 1167 376 629 463 208 211 204 146 183 

Table 3.  Annual number of shots sampled to derive the size composition of whiskery sharks in the 
Temperate Demersal Gillnet and Demersal Longline Fisheries 

Zone 93-94 94-95 95-96 96-97 97-98 98-99 00-01 01-02 02-03 04-05 05-06 06-07 12-13 

WC 14 53 46 34 25  83 95 56 19    

Zone1 41 55 49 48 42 45   16  27 30 45 

Zone 2 20 51 57 21 36 51        

Total 75 159 152 103 103 96 83 95 72 19 27 30 45 
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Table 4.  Annual number of observations used to derive the size composition of gummy sharks in 
the Temperate Demersal Gillnet and Demersal Longline Fisheries 

Zone 93-94 94-95 95-96 96-97 97-98 98-99 00-01 01-02 02-03 04-05 05-06 06-07 12-13 

WC   45    76 77 24     

Zone1 49 110 93 117 30 143  30 18 86 444 98 198 

Zone2 53 953 1652 170 819 949        

Total 102 1063 1790 287 849 1092 76 107 42 86 444 98 198 

Table 5.  Annual number of shots sampled to derive the size composition of gummy sharks in the 
Temperate Demersal Gillnet and Demersal Longline Fisheries 

Zone 93-94 94-95 95-96 96-97 97-98 98-99 00-01 01-02 02-03 04-05 05-06 06-07 12-13 

WC   11    19 26 20     

Zone1 27 29 25 31 21 22  11 11 12 37 26 44 

Zone2 29 81 152 29 63 76        

Total 56 110 188 60 84 98 19 37 31 12 37 26 44 

4.3.1.6 Length at age data 

The length at age data used by Simpfendorfer et al. (2000a) and Moulton et al. (1992) (Bass 
Strait 1973-76) for estimating the growth parameters of whiskery and gummy sharks, 
respectively, were used for calibrating the assessment model. This information is valuable for 
calculating the size transition matrix. 

3.3.2 Life history parameters and relationships 

The life history parameters used for the assessment of whiskery and gummy sharks are shown 
in Table 6 and Table 7, respectively. Relationships at length were converted to at age using a 
growth curve. The relationships at age used in the assessments are shown in Figure 15 and 
Figure 16 for whiskery and gummy sharks, respectively. 

Table 6.  Input parameter values for whiskery sharks. Parameter definition is given in the text    

Parameter Value Units Source 
a  1.0044  DoF unpublished 
b  13.171   

,wt fb  2.75e-06   

,wt fa  3.081  (McAuley and Simpfendorfer 2003) 

,wt mb  2.75e-06   

,wt ma  3.081  (McAuley and Simpfendorfer 2003) 
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Parameter Value Units Source 
Lmax 160 cm (TL) (Last and Stevens 2009) 

mA  13 years (Simpfendorfer et al. 2000b) 

fA  15 years (Simpfendorfer et al. 2000b) 

fK  0.369 years-1 (Simpfendorfer et al. 2000a) 

, fL  120.7 cm  (FL) (Simpfendorfer et al. 2000a) 

0, ft  -0.544 years (Simpfendorfer et al. 2000a) 

mK  0.423 years-1 (Simpfendorfer et al. 2000a) 

,mL  121.5 cm  (FL) (Simpfendorfer et al. 2000a) 

0,mt  -0.472 years (Simpfendorfer et al. 2000a) 

Bree  0.5 years (Simpfendorfer and Unsworth 1998a) 

0L  25 cm (TL) (Simpfendorfer and Unsworth 1998a) 

0 _ SDL  5 cm Assumed 

50L  125 cm (TL) estimated using the data presented in 
(Simpfendorfer and Unsworth 1998a)  

95L  136 cm (TL) estimated using the data presented in 
(Simpfendorfer and Unsworth 1998a) 

50Mat   6 years (Simpfendorfer et al. 2000a) 

minLs  4  (Simpfendorfer and Unsworth 1998a) 

maxLs  28  (Simpfendorfer and Unsworth 1998a) 

emba   0.314  (Simpfendorfer and Unsworth 1998a) 

embb  -17.8  (Simpfendorfer and Unsworth 1998a) 
'''

gP  0.5  (Simpfendorfer and Unsworth 1998a) 

  49.239  (Simpfendorfer and Unsworth 1998b) for a 16.5cm mesh 
  22.93  (Simpfendorfer and Unsworth 1998b) for a 16.5cm mesh 

WCPmc  0.288  DoF unpublished 

1ZnPmc  0.267  DoF unpublished 

2ZnPmc  0.383  DoF unpublished 

.all znPmc  0.291  DoF unpublished 

M  0.270 years-1 (Simpfendorfer et al. 2000b) 
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Table 7.  Input parameter values for gummy sharks. Parameter definition is given in the text 

Parameter Value Units Source 
a  1.080  DoF unpublished 
b  4.642  DoF unpublished 

,wt fb  4.62e-07  DoF unpublished 

,wt fa  3.477  DoF unpublished 

,wt mb  4.21e-06  DoF unpublished 

,wt ma  2.976  (Walker 2007) 

Lmax 185 cm (TL) (Last and Stevens 2009) 

mA  13 years (Walker 2010) 

fA  16 years (Walker 2010) 

fK  0.123 years-1 (Moulton et al. 1992) for Bass Strait 1973‒76  

, fL  201.9 cm  (TL) (Moulton et al. 1992) for Bass Strait 1973‒76 

0, ft  -1.550 years (Moulton et al. 1992) for Bass Strait 1973‒76 

mK  0.253 years-1 (Moulton et al. 1992) for Bass Strait 1973‒76 

,mL  138.7 cm  (TL) (Moulton et al. 1992) for Bass Strait 1973‒76 

0,mt  -0.9 years (Moulton et al. 1992) for Bass Strait 1973‒76 

Bree  1 year (Lenanton et al. 1990) 

0L  33 cm (TL) (Walker 2007) 

0 _ SDL  5 cm Assumed 

50L  112.9 cm (TL) (Walker 2007) for  West of Kangaroo Island  

95L  139.2 cm (TL) (Walker 2007) for  West of Kangaroo Island 

50Mat  4 years (Braccini et al. 2015) 

minLs  1  (Lenanton et al. 1990) 

maxLs  31  (Lenanton et al. 1990) 

emba  0.049  (Lenanton et al. 1990) 

embb  -4.133  (Lenanton et al. 1990) 
'''

gP  0.500  (Lenanton et al. 1990) 

  49.181  (Kirkwood and Walker 1986) for a 16.5cm mesh 
  24.358  (Kirkwood and Walker 1986) for a 16.5cm mesh 

WCPmc  0.221  DoF unpublished 

1ZnPmc  0.062  DoF unpublished 

2ZnPmc  0.292  DoF unpublished 

.all znPmc  0.238  DoF unpublished 

M  0.283 years-1 (Walker et al. 2000) 
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3.3.2.1 Allometric relationships 

Some biological relationships have been reported as a function of fork length (e.g. the age-
length relationship for whiskery sharks) and others as a function of total length (e.g. the age-
length relationship for gummy sharks). Hence, for standardisation purposes all relationships 
were converted to total length (Lj, in cm) using the following allometric relationship 

j jL aFL b  .  

where FLj is the fork length (set to the mid-point of size class j for the size-based models) and 
a and b are parameters of the allometric relationship. The values of these parameters are 
shown in Table 6 and Table 7 for whiskery and gummy sharks, respectively.  

The total weight (in kg) of an individual in size class j of sex g, wj,g, was calculated as: 

,
, ,

wt ga
j g wt g jw b L  

where bwt,g  and awt,g  are the sex-specific weight-length parameters. The values of these 
parameters are reported in Table 6 and Table 7 for whiskery and gummy sharks, respectively.  
These parameters and a growth curve (see below) were used to calculate wa,g, the total weight 
(in kg) of an individual in age class a of sex g. For female gummy sharks, total weight was 
capped at 30 kg. 
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Figure 15.  Whiskery shark biological and gear selectivity relationships at size (first column) and at 
age (second column) 
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Figure 16.  Gummy shark biological and gear selectivity relationships at size (first column) and at age 
(second column) 

3.3.2.2 Age and growth 

The age-structured models used age classes ranging between 1 and the maximum age, Ag. 

Whiskery sharks are fast growing and short to moderately long-lived. Males and females 
reach at least 10.5 and 11.5 years, respectively (Simpfendorfer et al. 2000a) so Simpfendorfer 



 

Fisheries Research Report [Western Australia] No. 282, 2017   41 

et al. (2000b)  set Ag  at 13 and 15 years for males and females, respectively (Table 6). For the 
S1 scenario, growth was modelled using a Von Bertalanffy curve (Figure 15) with the length 
of age class a and sex g was calculated as  

0,( )
, , (1 )g gK a t

a g gL L e 

    

where ,gL is the asymptotic total length for individuals of sex g ; gK  is the growth 

coefficient for individuals of sex g; and t0,g is the age at zero length for individuals of sex g. 
The values of these parameters are shown in Table 6. 

Gummy sharks are relatively fast growing and moderately long lived with a maximum age of 
13+ and 16+ for males and females, respectively (Walker 2010). Growth was modelled using 
a Von Bertalanffy curve (Figure 16). The value of the growth parameters for males and 
females are shown in Table 7. 

3.3.2.3 Reproduction 

Whiskery sharks are viviparous with mating and parturition occurring between August and 
October, ovulation occurring between late January and early April, and a gestation period of 
7‒9 months (Simpfendorfer and Unsworth 1998c). Reproduction is synchronous across the 
population but females produce litters every second year (Simpfendorfer and Unsworth 
1998c), hence, the breeding cycle, Bree, was assumed to be 2 years (Table 6). L0 is 22‒27 cm 
(mean of 25 cm). A maturity ogive (Figure 15) was used in scenarios where the proportion of 
mature females was assumed to vary with age. The proportion of mature females in size class 
j , ''

jP , was calculated as: 

50

95 50

''

log(19)

1

1
jj L L

L L

P
e










  

where L50 and L95 are the total lengths at 50 and 95% maturity (Table 6). These parameters 
were determined by refitting the data provided in (Simpfendorfer and Unsworth 1998a). The 
growth curve was used to convert ''

jP to ''
aP , the proportion of mature females at age a. For 

scenarios assuming knife-edge maturity, females ≥ 6 years old (Mat50) were considered to be 
mature (Table 6).  

Litter size, Ls, ranges between 4 and 28 embryos and it shows a weak linear relation with 
maternal size. Hence, '

jP ,  the number of pups produced by a female in size class j , was 

calculated as: 
'
j j emb embP L a b    

The values of the emba are embb parameters are shown in (Table 6). '
jP was capped at 28 pups 

for length classes larger than the maximum size of the females studied by Simpfendorfer and 
Unsworth (1998c). The growth curve was used to convert '

jP to '
aP , the number of pups 
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produced by a female in age class a . For scenarios where litter size was assumed to be 
constant, '

jP  and '
aP  were set at 16 pups (the mid-point of the reported range). 

Gummy sharks are viviparous with parturition, mating and ovulation occurring between 
November and early February and a one year gestation period (Lenanton et al. 1990; Walker 
2007). Reproduction is synchronous across the population with WA gummy sharks 
reproducing annually (Lenanton et al. 1990), hence, Bree was assumed to be 1 year (Table 7). 
L0 is ~33 cm TL. A maturity ogive (Figure 16) was used in scenarios where the proportion of 
mature females was assumed to vary with size/age. The values of the L50 and L95 parameters 
are shown in (Table 7). In scenarios where knife-edge maturity was assumed, females ≥ 4 
years old (Mat50) were assumed to be mature (Table 7). Ls ranges between 1 and 31 pups but 
it shows an exponential relation with maternal size (Lenanton et al. 1990). Hence, '

jP  was 

calculated as: 

' j emb embL a b
jP e 
  

'
jP was capped at 31 pups for length classes larger than the maximum size of the females 

studied by (Lenanton et al. 1990). For scenarios where litter size was assumed to be constant, 
'
jP  and '

aP  were set at 16 pups (the mid-point of the reported range).  

3.3.3 Fishing gear selectivity 

For both, whiskery (Simpfendorfer and Unsworth 1998b) and gummy (Kirkwood and Walker 
1986) sharks, empirical estimates of gear selectivity at length (Figure 15 and Figure 16) are 
available for the gillnet mesh sizes used in the TDGDLF. Hence, Selj, the gillnet selectivity of 
individuals in size class j was calculated as: 

Lj

j
j

L
Sel e








 
 
 
  

  
 

 

The values of   and  corresponding to a 16.5cm mesh size are reported in Table 6 and Table 
7 for whiskery and gummy sharks, respectively. The growth curve was used to convert Selj to 
Sela, the gillnet selectivity of individuals in age class a a . 

3.3.4 Proportion of male sharks in the commercial catch 

For some scenarios (Table 8 and Table 9), the commercial catch was split into males and 
females using information collected by the several scientific observer programs conducted by 
DoF. The proportion of males observed in the catch, Pmc, of management zone z is shown in 
Table 6 and Table 7 for whiskery and gummy sharks, respectively. 
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3.3.5 Natural mortality 

For whiskery sharks, empirical natural mortality, M, estimates are not available. Hence, 
Simpfendorfer et al. (2000b) used the life history method of Hoenig (1983) and assumed a 
maximum age of 15 years for an unexploited population to derive an age independent rate of 
0.27 yr-1 (Table 6). This value was used in all scenarios. For gummy sharks, empirical M 
estimates are based on conventional tagging. The estimated rate is 0.283 yr-1 (Walker et al. 
2000) (Table 7). 

3.3.6 Sensitivity analyses 

Multiple sources of uncertainty exist in the indirect stock size and fishing mortality information 
used to assess the status of exploited fish stocks which can result in biases in model outputs. To 
account for this, a range of sensitivity analyses were done to investigate uncertainty in model 
inputs and in the model used to describe population dynamics (i.e. structural uncertainty). 
Process error, a source of uncertainty typically modelled in current stock assessments, was not 
considered in the present study because the recruitment dynamics of viviparous sharks, such as 
whiskery and gummy sharks, differ markedly from broadcast spawners, such as invertebrates 
and most teleosts. In viviparous sharks, recruitment is likely to be proportional to adult biomass 
and not affected by environmental conditions to the same extent as in broadcast spawners 
(Walker 1998). Hence, we assumed that population dynamics are deterministic and that (time-
invariant) size-specific selectivity is known on the basis of the experimental work of 
Simpfendorfer and Unsworth (1998b) and Kirkwood and Walker (1986). 

In the past, gummy and whiskery shark stocks in WA had been assessed using  simple age- 
and sex-structured population dynamics models fitted only to ‘effective’ CPUE 
(Simpfendorfer et al. 1996, 2000b, respectively). Since the development of these models, 
additional information useful for calibrating population dynamics model has become 
available. Hence, to incorporate this information, an integrated stock assessment approach 
was applied for assessing these species. Also, to illustrate the effect of incorporating new data 
and test uncertainty in model structure a series of sensitivity tests were conducted (Table 8 
and Table 9). Model sensitivity to M  was tested by using the M values derived by Braccini 
et al. (2015), who used a combination of age-independent and age-dependent life history 
methods. The effect of M  and h input values is tested jointly given their high correlation. 
The sensitivity analyses were done in steps, evaluating the effects of incremental changes that 
bring the assessment model from its original model form to the final model form which 
makes used of all available data. 

All models were developed in Automatic Differentiation Model Builder (ADMB; Fournier et 
al. 2012). The estimation process consists of a maximum likelihood step (all scenarios) 
followed by Markov Chain Monte Carlo (MCMC) sampling (base case only) with posterior 
estimates based on 1,000,000 samples run, a burn in of 5% and a thinning of 100 for ensuring 
acceptance ratios of about 0.3. MCMC chains are analysed using the ‘coda’ package of the 
software R. 
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3.3.7 Modelling approach 

The population dynamics models used an annual time step and, for the size-based and age-
structured models, it tracked the numbers and biomass of sharks by their sex and age (age-
structured models) or size (size-based models), and included the processes of mortality, 
movement and recruitment. The relationship between annual recruitment and mature female 
stock size is assumed to follow a Beverton-Holt stock recruitment relationship (e.g. 
Simpfendorfer et al. 2000b). Parameter estimation was undertaken using multiple phases; a 
penalty, Catchpen, was included to prevent negative population biomasses in the early 
estimation phases. 

3.3.7.1 Model S1 

This scenario is based on a Bayesian Schaefer surplus production model fitted to CPUE. To 
reduce estimation uncertainty, we followed  McAllister et al. (2001) and constructed a prior 
for r, the population intrinsic growth rate, based on demographic methods (Figure 17). The 
use of a simple model allows an understanding of the consistency and robustness of the 
assessment results and the influence of different data types and parameters (Haddon 2001). 

 

Figure 17.  Whiskery and gummy sharks r prior derived from demographic methods 

3.3.7.2 Models S2‒S6 

The Excel model constructed by Simpfendorfer et al. (1996, 2000b) was coded in ADMB and 
used in the S2‒S6 scenarios which extend the model developed by Simpfendorfer et al. 
(1996, 2000b) by incorporating a maturity ogive, a fecundity relationship, spatial structure 
and movement among spatial zones. Below is a description of the population dynamics 
implemented and the objective function used. 
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Table 8.  Whiskery shark population dynamics models used. Base case and sensitivity tests considering alternative model inputs and structures. Size: size 
composition; A&G: age and growth; Pmc: proportion of males in catch; M: natural mortality; h: steepness. 

Model Data  Input parameters Q Movement Spatial Model 

 Size A&G Pmc Fecundity Maturity M h   structure type 

Base case Yes Yes Observed N/A At length constant 0.419 2 Yes 3 zones Length-based 

S1 No No N/A N/A N/A Constant N/A 2 N/A 1 zone Biomass dynamics 

S2 No No Same Constant Knife edge Constant N/A 2 N/A 1 zone Age-structured 

S3 No No Same At age At age Constant N/A 2 N/A 1 zone Age-structured 

S4 No No Observed At age At age Constant N/A 2 No 3 zones Age-structured 

S5 No No Observed At age At age Constant N/A 1 Yes 3 zones Age-structured 

S6 No No Observed At age At age Constant N/A 2 Yes 3 zones Age-structured 

S7 Yes Yes Observed N/A At length Constant 0.419 2 N/A 1 zone Length-based 

S8 Yes Yes Same N/A At length Constant 0.419 2 N/A 1 zone Length-based 

S9 Yes Yes Observed N/A Knife edge Constant 0.419 2 N/A 1 zone Length-based 

S10 Yes Yes Observed N/A At length At length 0.351 2 N/A 1 zone Length-based 

S11 Yes Yes Observed N/A At length Constant 0.419 1 N/A 1 zone Length-based 
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Table 9.  Gummy shark population dynamics models used. Base case and sensitivity tests considering alternative model inputs and structures. Size: size 
composition; A&G: age and growth; Pmc: proportion of males in catch; M: natural mortality; h: steepness. 

Model Data  Input parameters Movement Spatial Model 

 Size A&G Pmc Fecundity Maturity M h  structure type 

Base case Yes Yes Observed N/A At length constant 0.616 Yes 3 zones Length-based 

S1 No No N/A N/A N/A Constant N/A N/A 1 zone Biomass dynamics 

S2 No No Same Constant Knife edge Constant N/A N/A 1 zone Age-structured 

S3 No No Same At age At age Constant N/A N/A 1 zone Age-structured 

S4 No No Observed At age At age Constant N/A No 3 zones Age-structured 

S5 No No Observed At age At age Constant N/A Yes 3 zones Age-structured 

S6 No No Observed At age At age Constant N/A Yes 3 zones Age-structured 

S7 Yes Yes Observed N/A At length Constant 0.616 N/A 1 zone Length-based 

S8 Yes Yes Same N/A At length Constant 0.616 N/A 1 zone Length-based 

S9 Yes Yes Observed N/A Knife edge Constant 0.616 N/A 1 zone Length-based 

S10 Yes Yes Observed N/A At length At length 0.481 N/A 1 zone Length-based 

S11 Yes Yes Observed N/A At length Constant 0.616 N/A 1 zone Length-based 
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3.3.7.2.1 Population dynamics 

The population dynamics are modelled using an age- , sex- and spatially-structured model. 
Stock dynamics are described by 
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where , , ,a g t zN  is the numbers of individuals of age a and sex g at time t in zone z; , , ,a g t zC  is 

the predicted catch in numbers of individuals of age a and sex g at time t in zone z; M is the 
instantaneous rate of natural mortality; and Ag is the maximum age of sex g. 

The movement transition matrix, , estimated in  in 3.1.2.7 Exchange rates was used to 
incorporate movement as follows  
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Recruitment, 0, , ,g t zN , is given by 
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aP is the number of pups per pregnant female at age a; ''

aP is the proportion of mature 
females at age a ; and Bree  is the breeding cycle. 
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For the derivation of the upper bound of   see Simpfendorfer et al. (2000b). 

The , , ,a g t zC  is calculated as 

, , , , , , , ,a g t z a g t z a g t zC N Sel F  
where , ,g t zF  is the fishing mortality on individuals of sex g at time t in zone z,  which is 

calculated as 
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where , ,g t zY is the reported catch (in weight) of individuals of sex g at time t in zone z; and 

, ,g t zBe  is the exploitable biomass of individuals of sex g at time t in zone z. 

Total biomass at time t is calculated as 
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For scenarios assuming knife-edge maturity, mature female biomass at time t is calculated as 
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For scenarios using a maturity ogive, mature female biomass at time t is calculated as 
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The exploitable biomass at time t in zone r is calculated as 
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The predicted catch rate at time t in zone r is calculated as 

, , ,t z p z t zU q Be   

where qp,z is the model-estimated catchability coefficient for period p in zone z. As done by 
Simpfendorfer et al. (2000b), two time periods were assumed for whiskery sharks to account 
for changes in targeting practices; a single q was assumed for gummy sharks. 

3.3.7.2.2 Per recruit analyses and initial conditions 

To account for fishing prior to 1975 (first year with catch and effort records) the state of the 
population in 1975 in zone z is determined by  
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where Finit is the model-estimated fishing mortality prior to 1975; and 0,zR is the pre-1975 

recruitment in zone z, which is calculated as  
0
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



  
where X0 is the pre-1975 embryos per recruit, which is calculated as 
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Virgin biomass is calculated as 

0 , ,0, ,a g z a g
g a z

B N w
  

where 

, ,0,

, ,0,

* '''

1, ,0,

    0,
          

    1 ,
,

(1 )

a g z

a g z

z g
a g z M

g

M g

M

R P a
N

a AN e
a AN e

e

 





 
 

 







 

For scenarios assuming knife-edge maturity, virgin mature biomass is calculated as 
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For scenarios using a maturity ogive, virgin mature biomass is calculated as 
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For models that assume movement among zones, model initialisation required the cycling of 
the model to allow for movement among the zones and attain equilibrium conditions before 
entering the dynamic phase. 

3.3.7.2.3 Objective function 

To estimate Finit, *
rR ,  , qp,z, and  , the model is fitted to the catch rate data by minimizing 

the following objective function,  , 
2
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2
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where ssq is the sum of squares; and  is the standard deviation of the catch rate data. 
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For the spatial models of gummy shark, the CPUE from Zone 2 only was used (see 3.2 Catch 
and effort standardisation for a justification). For the spatial models of gummy sharks, *

WCR  

and *
1ZNR  could not be estimated because CPUE information is only available for Zone 2 of 

the JASDGDLF (ZN2). Hence, these two parameters were set at the observed mean 
proportion of the annual catch in those zones relative to the annual catch in ZN2 (3.5% and 
9% for West Coast; WC, and Zone 1 of the JASDGDLF; ZN1, respectively). 

3.3.7.3 Base case model and models S7‒S11 

Below is a description of the integrated spatial size-base, sex-structured model proposed as the 
base case. A size-based model is appropriate because all biological (e.g. fecundity, maturity) and 
fishery (e.g. gillnet selectivity) relationships are available as a function of size, not age. Also the 
data used for fitting the model are a function of size (e.g. catch size composition). Using a size-
based model therefore removes the uncertainty introduced in age-structured models where a 
growth curve is required for converting at-size to at-age relationships. 

3.3.7.3.1 Growth 

Following Simpfendorfer et al. (2000a), growth is modelled using a modified version of the 
von Bertalanffy equation to ensure that the curve passed through the known size at birth: 
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3.3.7.3.2 Size-distribution of recruits 

Sharks are considered to recruit into the population at age 1. The size distribution of these 
individuals is considered to follow a normal distribution. Hence, j , the probability that a 1 

year old individual belongs to size class j  is calculated as  
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where 0L  is the mean total length at birth; and 0 _ SDL is the standard deviation of 0L . 

3.3.7.3.3 Per recruit analyses and initial conditions 

The unfished level of female mature biomass per recruit, 0BmR , is calculated as 
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where ,j g fw 
is the weight of a female individual in size class j; and ''

jP is the proportion of 

mature females in size class j. 

The initial numbers of females per recruit in size class j, 0, ,j g fN 
, considering the process of 

survival and growth is given by 

0, , , ', ,j g f j g f j j g fN Surv     

where ,j g fSurv  is the survival probability of female individuals in size class j; and ', ,j j g f  is 

the size-transition matrix of females, which represents the fraction of individuals in size-class 
'j  that grows into size-class j during the modelled time step. 

,j gSurv  is calculated as 
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where '''
g fP  is the proportion of female embryos; , ,a j gN is the numbers per recruit of age class 

a, size class j and sex g; ,j gM  is the natural mortality rate of individuals in size class j of sex 

g;  jSel is the gillnet selectivity of individuals in size class j; and F is the fishing mortality 

rate. For the unfished conditions, F was set at 0 whereas for the initial conditions, F was set at 
the model-estimated Finit, which is the fishing mortality rate prior to 1975. Finally, to loop 
over enough years _f sizeA is set at double fA  . 

Following Sadovy et al. (2007),  ', ,j j g is computed  as 
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where G is the standard deviation of the growth increment, assumed to be independent of 
age and current size. Growth in the model was considered as a discrete event that occurs at 
the end of the biological year. 

The unexploited female mature biomass, 0S , is calculated as 
*

0 0S R BmR  
where *R is the model-estimated unfished recruitment. 



52   Fisheries Research Report [Western Australia] No. 282, 2017 

Then, ,init zR , the recruitment at the initial level of fishing mortality (Finit) in zone z  is 

calculated as 
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where zpR  is the model-estimated proportion of the initial recruitment in zone z ; SRRa and 

SRRb are parameters of the Beverton and Holt stock-recruitment relationship; and
initFBmR is the 

female mature biomass per recruit at the Finit level. 

SRRa  is calculated as 
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where h is the steepness parameter, which was calculated analytically by Braccini et al. 
(2015) using the method of Brooks et al. (2010). 

SRRb  is calculated as 
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3.3.7.3.4 Population dynamics 

The number of individuals in length class j and sex g growing and surviving to the end of 
time t in zone z, , , ,j g t zN , is calculated as 
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where , , ,j g t zZ  is the total mortality rate of individuals in length class j, sex g at time t in zone 

z, which is calculated as 
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where , , ,j g t zF  is the fishing mortality rate of individuals in length class j, sex g at time t in 

zone z, calculated as 
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where , ,g t zFSF  is the fully selected fishing mortality rate of individuals of sex g at time t in 

zone z, calculated using Newton’s methods to solve the Baranov catch equation:  
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where , , ,j g t zC  is the predicted catch biomass of individuals of length class j, sex g at time t in 
zone z. 

Movement among zones (West Coast, Zone 1 and Zone 2) was incorporated as follows 
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where  is the size of the smallest individual recaptured in a different zone; and   is the 
movement transition matrix estimated in  in 3.1.2.7 Exchange rates.  

The expected number of recruits in year t+1 and zone z, 1,t zR 
 , is calculated as 

,
1,

,( )
t z

t z
SRR SRR t z

Bm
R

a b Bm 
  

where ,t zBm is the female mature biomass at time t in zone z, calculated as 
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Total biomass at time t in zone z is calculated as 
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The exploitable biomass at time t in zone z is calculated as 
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The predicted catch rate at time t in zone z, ,t zU , is calculated as 

, , ,t z p z t zU q Be   

where qp,z is the model-estimated catchability coefficient for period p in zone z.  

The size compositions are assumed to have a multinomial distribution so , , ,j g t zP , the predicted 
proportion of the catch in size class j, sex g at time t in zone z, is calculated as 

, , ,
, , ,

, , ,

j g t z
j g t z

j g t z
j

CP
C




 

3.3.7.3.5 Objective function 

To estimate gK , ,gL ,   (the standard deviation of the growth data), G  (the standard 

deviation of the size transition matrix), Finit, R*, zpR , qp,z,   (the standard deviation of the 

catch rate data), and the ijp parameters, the model is fitted to the catch rate, catch size 
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composition, age and growth, conventional tagging, and acoustic tagging data by minimizing 
an overall objective function,  , which contains seven terms 

1 2 2 3 4 5 pen init priorTag F              

where 1 , 2 , 3 , 4 , and 5  are the negative log-likelihoods for the catch rate, catch size 
composition, growth data, conventional tagging, and acoustic tagging data, respectively;   is 
a scaler for the size composition likelihood, set at 0.005; 2  is a scaler for the growth 

likelihood, set at 0.05; penTag  is a penalty used to maintain all ijp parameters between 0 and 

1; and init priorF is the prior distribution of the initial fishing mortality. This was required to 

avoid numerical solutions that set Finit to unrealistically low values (<0.0001). We used a 
lognormal distribution with mean 0.01 [derived from the value estimated by Simpfendorfer et 
al. (2000b)] and Standard Deviation (SD) (in log space) of 0.5 (Figure 18). 

 
Figure 18. Finit prior 

Sharks, unlike teleosts, are not expected to exhibit very variable recruitment and, when 
combined with selective fishing, the size-composition data are not expected to show 
substantial variability among time periods. Hence, as suggested by Francis (2011), primary 
importance was given to the standardised catch rate data. 

Following Francis (2011), 1 includes a weighting factor, which incorporates the estimating 
uncertainty of the CPUE index, and it is calculated as  
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where ,t zU   is the observed catch rate at time t in zone z; and ,t z  is the total standard 

deviation at time t in zone z, which was calculated as 

2 22
,t t zSD  

 

where ,t zSD is the standard deviation of the observed catch rate at time t in zone z (derived 

from the catch rate standardisation process). 

2 is calculated as 

, , ,2 , , , , , log( )j g t zg t z j g t z
j g t z

Neff P P  
 

where , ,g t zNeff is the effective sample size for sex g at time t in zone z; and , , ,j g t zP is the 

observed proportion of the catch in size class j, sex g and time t in zone z. 

For both species, , ,g t zNeff was set at the minimum of 300 and ,g tn , where ,g tn is the sample 

size for sex g at time t,  because the sample mean size and standard deviation stabilize at 
about 300 samples (Figure 19 and Figure 20). 

 

Figure 19.  Effect of sample size on the sample mean and Standard Deviation (SD) for female (pink) 
and male (blue) whiskery sharks 
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Figure 20.  Effect of sample size on the sample mean and Standard Deviation (SD) for female (pink) 
and male (blue) gummy sharks 

3 is calculated using the robust regression function implemented in ADMB  (Fournier 2011) 
with standard deviation  . 

Finally, 4 and 5 are calculated as 

5 ,ˆconv ij
n

p  
 

5 ,ˆacous ij
n

p  
 

 where ,ˆconv ijp and ,ˆacous ijp are the predicted recapture probabilities for individuals tagged with 

conventional or acoustic tags, respectively. 

3.4 Risk assessment of dusky and sandbar sharks 

3.4.1 Framework 

A risk assessment for dusky and sandbar sharks was undertaken using a qualitative, 
consequence-likelihood (C × L) method developed for prioritising issues as per the National 
ESD framework (Fletcher et al. 2002; Fletcher 2005; Fletcher 2014). This process is used to 
implement Ecosystem Based Fisheries Management (EBFM) in Western Australia and 
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enables efficient screening of the large number of potential ecological, social, economic and 
governance issues that routinely arise in fisheries management and that must be considered to 
achieve ESD (Fletcher 2002). The EBFM framework used in WA provides the operating 
policy-basis for implementing sustainable fisheries and ecosystem management in WA and is 
based on the global standard for risk assessment and risk management (AS/NZS ISO 31000), 
adapted for use in a fisheries context. The risk analysis process involves examination of the 
sources of risk (issue identification), the potential consequences (impacts) associated with 
each issue and the likelihood (probability) of a particular level of consequence actually 
occurring. This combination produces an estimated level of comparative risk, which can then 
be used to assist in determining the level of management response required. 

3.4.2 Scope 

This assessment was generated by considering issues relevant to the ecological sustainability 
of WA’s dusky shark and sandbar shark resources. Assessment was made against meeting the 
following management objective: 

To maintain the mature biomass of dusky and sandbar sharks above BMSY to maintain high 
productivity and ensure the main factor affecting production of pups is the environment.  

This risk assessment relates specifically to the status of dusky and sandbar shark as fisheries 
resources and does not consider other contributions to ESD such as other ecological 
components, social or economic components. The risk of not achieving this objective was 
evaluated over a five year time frame. However, given the inherently low biological 
productivity of these species, which have generation times of 20 to 30 years (McAuley et al. 
2007a), it was also important to consider that the implications of not meeting this objective 
over even a relatively short-time frame could have much longer lasting consequences.   

3.4.3 Issue identification 

Two broad categories of issues were identified as posing a threat to the ecological 
sustainability of dusky and sandbar sharks; extractive fishing in WA and external influences 
on stocks that are outside Western Australian State jurisdiction or direct control. To more 
precisely determine the source and nature of risks, extractive fishing was further separated 
into five issues and external influences into three issues (Table 10). Extractive fishing 
included a category for each of the three main sources of fishing in WA, an ‘other’ category 
for all minor fisheries, and a category for the cumulative effects of extractive fishing in WA. 
Because one of these major sources, the Northern Shark Fisheries, is currently in hiatus but 
under consideration for resumption, where relevant the risks associated were split into those 
under current conditions and those arising from a resumption of fishing. External influences 
included risks posed by extractive fishing from non-WA fisheries, coastal and offshore 
development, and environmental influences.  
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Table 10.  Issues identified for risk analysis of dusky and sandbar sharks resources in Western 
Australia (WA) 

Issue group Risk/issue 

Extractive Fishing in WA Temperate Demersal Gillnet & Demersal Longline Fishery 

 

Recreational fishing 

 

Northern Shark Fisheries (current conditions and resumption) 

 

Other WA fisheries 

 

Cumulative WA fisheries 

External Influences Non-WA extractive fisheries 

 

Coastal and offshore development 

  Environmental influences 

 

The component tree for the risk assessment contained two components; dusky and sandbar 
sharks as retained species. Both species are distributed throughout large extents of WA 
coastal waters and have a complex life cycle that includes large-scale spatial separation of 
different life stages. To reflect the vulnerability of different life stages to different threats, and 
incorporate new and pre-existing information on the spatial ecology of these species, the 
component tree was further subdivided into three categories for each species (Figure 21). The 
adult subcomponent was based on age classes above the age at 50% maturity for each species 
(McAuley et al. 2007a), and the division of the two juvenile subcomponents was based on the 
size selectivity of the main target fishing methods [i.e. 16.5cm (6.5”) and 17.8cm (7.0”) 
demersal gillnet mesh sizes). Dusky sharks less than seven years of age and sandbar sharks 
between 6 and 15 years old were considered most vulnerable to these mesh sizes 
(Simpfendorfer and Unsworth, 1998b; McAuley et al. 2007c).  
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Figure 21.  Component tree for ecological sustainability of dusky and sandbar shark resources in 
Western Australia 

Taking into account the eight issues (Table 10) for both of the retained species, separation of 
Northern Shark Fisheries issues into ‘current conditions’ and ‘resumption of fishing’ 
scenarios and each of the three life stages (Figure 21), a total of 54 issues were considered as 
part of this risk assessment.  

3.4.4 Risk assessment process and reporting 

After the components and issues were identified, a process of risk analysis was completed 
using the formal ISO 31000-based qualitative risk assessment method. The risk analysis was 
conducted on the 5th and 6th November 2015 by DoF research scientists (R. McAuley, M. 
Braccini, and A. Harry). The group made what it considered to be its most objective estimate 
of the risk level for each issue, based on the combined judgement of the participants at the 
workshop, who collectively had considerable expertise in the issues examined.  

Western Australian Shark Resources 

Retained Species 

Dusky shark 

Neonates / 
juvenile 

(0 – 6 yrs) 

Juvenile / 
subadult 

(6 – 25 yrs) 

Adults  
(>25 yrs) 

Sandbar shark 

Neonates / 
juvenile 

(0 – 6 yrs) 

Juvenile / 
subadult 

(6 – 15 yrs) 

Adults  
(>15 yrs) 
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Although the risk assessment included specific subcomponents of each stock, the level of 
consequence for each issue was determined at the component level, i.e. the whole of stock 
level for each species. For example, the consequence of fishing on neonate / juvenile dusky 
sharks by the TDGDLF was evaluated in the context of its impact on the overall dusky shark 
stock. Consequence levels ranged from 0 to 5, with 0 being negligible and 5 being 
catastrophic (Box 1). 

 

Box 1.  Description of consequence levels for target and non-target fish stocks; from DoF 2015 

For each consequence, participants assigned the level of likelihood to one of five levels, 1 
being remote and 5 being certain (Box 2). Likelihood was described as the conditional 
likelihood that a specific level of impact (consequence) may occur within the defined time 
frame, given the current or proposed set of management arrangements either from an 
accumulation of small ‘events’ and/or from a single large ‘event’ (Fletcher 2014). In line with 
this description, the selections of likelihood and consequence levels formed a pair, and were 
not chosen independently.  

 

Box 2. Description of likelihood levels; from DoF 2015 

The overall risk for a specific issue was the product of consequence and likelihood pairs that 
produced the highest risk (Figure 22). Finally, each issue was assigned a corresponding Risk 

LIKELIHOOD LEVELS 

1. Remote – Never heard of but not impossible here (< 5 % probability) 

2. Unlikely – May occur here but only in exceptional circumstances (> 5 %) 

3. Possible – Clear evidence to suggest this is possible in this situation (> 30 %) 

4. Likely – It is likely, but not certain, to occur here (> 50 %) 

5. Certain – It is almost certain to occur here (> 90 %) 

CONSEQUENCE LEVELS  

FISH STOCKS (target and non-target) – measured at stock level 

1. No measurable depletion of stock 

2. Measurable but minor levels of depletion of stock 

3. Maximum acceptable level of depletion of stock 

4. Level of depletion of stock unacceptable but still not affecting recruitment level of 
the stock 

5. Level of depletion of stock are already (or will definitely) affect future recruitment 
potential / level of the stock 

6. Permanent or widespread and long-term depletion of key fish stock, close to 
extinction levels 
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Rating within one of five categories: negligible, low, medium, high or severe (Table 11), and 
the rationale for classifying issues at each risk level was documented.  

  Likelihood 
 

 Remote 

(1) 

Unlikely 

(2) 

Possible 

(3) 

Likely 

(4) 

Certain 

(5) 

C
on

se
qu

en
ce

 

Minimal (1) 1 2 3 4 5 

Moderate (2) 2 4 6 8 10 

High (3) 3 6 9 12 15 

Major (4) 4 8 12 16 20 

Catastrophic (5) 5 10 15 20 25 

Figure 22.  Standard Consequence — Likelihood Risk Matrix (based on AS 4360 / ISO 31000; from 
DoF 2015) 

Table 11.  Risk levels applied to all assets by the Department of Fisheries Western Australia 
(modified from Fletcher 2005) 

Risk 
Category / Level Description 

Likely Reporting & 
Monitoring 
Requirements 

Likely 
Management 
Action 

1 

Negligible 
Acceptable; Not an issue Brief justification – 

no monitoring Nil 

2 

Low 
Acceptable; No specific control 
measures needed 

Full justification 
needed – periodic 
monitoring 

None specific 

3 

Medium 

Acceptable; With current risk control 
measures in place (no new 
management required) 

Full Performance 
Report – regular 
monitoring 

Specific 
management 
and/or monitoring 
required 

4 

High 

Not desirable; Continue strong 
management actions OR 
new / further risk control measures 
to be introduced in the near future 

Full Performance 
Report – regular 
monitoring 

Increased 
management 
activities needed 

5 

Severe 

Unacceptable; Major changes 
required to management in 
immediate future 

Recovery strategy 
and detailed 
monitoring 

Increased 
management 
activities needed 
urgently 
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3.4.5 Available data 

3.4.5.1 Commercial catch 

The reported commercial catches of dusky and sandbar sharks in WA are shown in Figure 23 
and Figure 24 respectively. 

In the Southern and West Coast bioregions of WA, whaler sharks with an inter-dorsal fin 
length greater than 70 cm (herein referred to as ‘oversized’) have been totally protected since 
2006. Hence, commercial (and recreational) fishers catching these individuals are required to 
release them. The only records of over-sized dusky shark captures are protected species 
(‘TEPS’) records from TDGDLF vessels’ daily logbook returns, although it is unclear how 
complete these data are. Nevertheless, to quantify the catches of oversized dusky sharks, all 
records from TDGDLF daily logbooks (2006‒07 onwards) were compiled. The average 
estimated weight of a 3m dusky shark (166 kg) was multiplied by the number reported dead 
plus the number reported to be released alive times a PCM of 0.3. The calculated annual 
catches are shown in Figure 23 (TEPS panel). It must be noted that the calculations were 
made on the unrealistic assumption of 100% reporting rate, hence, these are considered to be 
under- estimates of the true levels of catch. 

3.4.5.2 Recreational catch 

The reconstructed catch series of dusky and sandbar sharks are shown in Figure 23 and Figure 
24, respectively. 

 

Figure 23. Dusky shark catches used in the risk assessment 
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Figure 24.  Sandbar shark catches used in the risk assessment 

3.4.5.3 Catch size composition 

Size composition for the TDGDLF catch between 1994 and 1999 was originally reported by  
McAuley and Simpfendorfer (2003) and sampling continued subsequently until 2004 
(McAuley et al., 2005) and on a more limited level through the current project (Figure 25, 
Figure 27). For each gear deployment, the date, time, GPS location and bottom depth (in m) 
were recorded. Upon retrieval, all individuals were identified to species level and their fork 
lengths (FL) measured (in cm) by scientific observers [for a detailed description of the 
sampling design refer to McAuley and Simpfendorfer (2003) and McAuley et al. (2005)]. 
Catch size composition data are also available for dusky (Figure 26) and sandbar (Figure 28) 
sharks from the NSF and for sandbar sharks from the Pilbara trawl fishery (Figure 29) 
(McAuley et al. 2005). The number of observations and shots used to derive the size 
composition of dusky and sandbar sharks in the TDGDLF and the NSF are show in Table 12, 
Table 13, Table 14 and Table 15. Fork lengths have been transformed to TL using the 
allometric relationships (McAuley unpublished). 
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Figure 25.  Observed dusky shark (sexes combined) size composition (as an annual proportion) from 
the Temperate Demersal Gillnet and Demersal Longline Fisheries (16.5cm and 17.8cm 
mesh) 

 

Figure 26.  Observed dusky shark (sexes combined) size composition (as an annual proportion) from 
the Northern Shark Fisheries 
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Figure 27. Observed sandbar shark (sexes combined) size composition (as an annual proportion) 
from the Temperate Demersal Gillnet and Demersal Longline Fisheries (16.5cm and 
17.8cm mesh) 

 

Figure 28.  Observed sandbar shark (sexes combined) size composition (as an annual proportion) 
from the Northern Shark Fisheries 
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Figure 29. Observed sandbar shark (sexes combined) size composition (as an annual proportion) 
from the Pilbara trawl fishery 

Table 12.  Annual number of observations used to derive the size composition of dusky sharks in 
the Temperate Demersal Gillnet and Demersal Longline Fisheries (TDGDLF) and the 
Northern Shark Fisheries (NSF) 

Fishery 93-94 94-95 95-96 96-97 97-98 98-99 00-01 01-02 02-03 03-04 04-05 05-06 06-07 12-13 

TDGDLF               

WC 177 1522 799 959 563 78 324 253 228  86    

Zone1 2320 1580 2862 2023 1524 2468  150 240  229 1050 548 1005 

Zone2 23 573 367 678 581 240         

NSF       8 8 25 11     

Total 2520 3675 4028 3660 2668 2786 332 411 493 11 315 1050 548 1005 
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Table 13.  Annual number of shots sampled to derive the size composition of dusky sharks in the 
Temperate Demersal Gillnet and Demersal Longline Fisheries (TDGDLF) and the 
Northern Shark Fisheries (NSF) 

Fishery 93-94 94-95 95-96 96-97 97-98 98-99 00-01 01-02 02-03 03-04 04-05 05-06 06-07 12-13 

TDGDLF               

WC 13 81 157 82 58 17 108 104 89  19    

Zone1 126 92 99 77 78 59  11 17  15 40 45 64 

Zone2 13 91 82 47 60 59         

NSF       7 6 6 4     

Total 152 264 338 206 196 135 115 121 112 4 34 40 45 64 

Table 14.  Annual number of observations used to derive the size composition of sandbar sharks in 
the Temperate Demersal Gillnet and Demersal Longline Fisheries (TDGDLF) and the 
Northern Shark Fisheries (NSF) 

Fishery 93-94 94-95 95-96 96-97 97-98 98-99 00-01 01-02 02-03 03-04 04-05 06-07 12-13 

TDGDLF              

WC  509 588 545 291 52 1326 1295 1353  52   

Zone1 28  331 420 249 113  312 208   282 73 

Zone2   341  20 139        

NSF       348 498 381 162    

Total 28 509 1260 965 560 304 1674 2105 1942 162 52 282 73 

Table 15.  Annual number of shots sampled to derive the size composition of sandbar sharks in the 
Temperate Demersal Gillnet and Demersal Longline Fisheries (TDGDLF) and the 
Northern Shark Fisheries (NSF) 

Fishery 93-94 94-95 95-96 96-97 97-98 98-99 00-01 01-02 02-03 03-04 04-05 06-07 12-13 

TDGDLF              

WC  20 96 56 35 20 126 131 152  11   

Zone1 14  40 25 25 18  16 22   10 18 

Zone2   15  10 31        

NSF       26 33 10 19    

Total 14 20 151 81 70 69 152 180 184 19 11 10 18 

For dusky sharks, given that 16.5cm and 17.8cm mesh gillnets select predominately 0+ to 2 
year old sharks, the annual proportion of sharks <= 82.5 cm FL (the mid-point between the 
minimum and maximum sizes of neonate sharks reported by Simpfendorfer (2000), was used 
as an indicator of the annual proportion of neonate sharks. For standardisation purposes, 
analyses were done using blocks with at least five observations per year with data. Also, only 
blocks with at least five years of data were selected. Results are presented by spatial block, 
rather than by grouping blocks within a year (Figure 30). 
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Figure 30.  Annual proportion of dusky sharks <= 82.5 cm Fork Length in the observed catch of 
selected spatial blocks. The total number of sharks observed is shown on top of each bar 

3.4.5.4 Average weights from logbook catch records 

Time-series data on the average catch weight in the TDGDLF were also available for dusky 
(Figure 31) and sandbar (Figure 32) sharks. 

 

Figure 31.  Dusky shark average weight (± Standard Deviation) calculated from the Temperate 
Demersal Gillnet and Demersal Longline Fisheries logbooks 
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Figure 32.  Sandbar shark average weight (±Standard Deviation) calculated from the Temperate 
Demersal Gillnet and Demersal Longline Fisheries logbooks 

3.4.5.5 Acoustic tagging 

The proportion of time spent by each tagged shark in each of WA’s fishing management 
zones calculated in 3.1.2.5 Proportion of time per area was used to assess the exposure of 
dusky and sandbar sharks to fishing pressure.  

3.4.5.6 Conventional tagging 

Extensive conventional tagging of dusky (Figure 33 and Figure 34) and sandbar (Figure 35 
and Figure 36) sharks occurred as part of FRDC projects 93/067 (Simpfendorfer et al. 1996) 
and 2000/134 (McAuley et al. 2005) and through annual fishery-independent research surveys 
since 2000.  
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Figure 33.  Proportion of time at liberty per management zone for recaptured female dusky sharks 
released in different management zones. Bars represent the proportional time 
(interpolated) each recaptured individual spent per management zone. Red dots denote 
size at release and recapture. Individuals are sorted in descending order by their size at 
release. A reference key with four arbitrary Fork Length (FL) sizes is provide in the 
bottom left panel for comparative purposes only. WCDGDLF: West Coast Demersal 
Gillnet and Demersal Longline (Interim) Managed Fishery; Zone 1: Zone 1 of the Joint 
Authority Southern Demersal Gillnet and Demersal Longline Managed Fishery; Zone 2: 
Zone 2 of the Joint Authority Southern Demersal Gillnet and Demersal Longline Managed 
Fishery; SA: South Australia 
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Figure 34.  Proportion of time at liberty per management zone for recaptured male dusky sharks 
released in different management zones. Bars represent the proportional time 
(interpolated) each recaptured individual spent per management zone. Red dots denote 
size at release and recapture. Individuals are sorted in descending order by their size at 
release. A reference key with four arbitrary Fork Length (FL) sizes is provide in the 
bottom right panel for comparative purposes only. Ningaloo: Ningaloo closure; 
WCDGDLF: West Coast Demersal Gillnet and Demersal Longline (Interim) Managed 
Fishery; Zone 1: Zone 1 of the Joint Authority Southern Demersal Gillnet and Demersal 
Longline Managed Fishery; Zone 2: Zone 2 of the Joint Authority Southern Demersal 
Gillnet and Demersal Longline Managed Fishery; SA: South Australia 
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Figure 35.  Proportion of time at liberty per management zone for recaptured female sandbar sharks 
released in different management zones. Bars represent the proportional time 
(interpolated) each recaptured individual spent per management zone. Red dots denote 
size at release and recapture. Individuals are sorted in descending order by their size at 
release. A reference key with four arbitrary Fork Length (FL) sizes is provide in the top 
right panel for comparative purposes only. WANCSF: Western Australia North Coast 
Shark Fishery; Ningaloo: Ningaloo closure; WCDGDLF: West Coast Demersal Gillnet 
and Demersal Longline (Interim) Managed Fishery; Zone 1: Zone 1 of the Joint Authority 
Southern Demersal Gillnet and Demersal Longline Managed Fishery; Zone 2: Zone 2 of 
the Joint Authority Southern Demersal Gillnet and Demersal Longline Managed Fishery 
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Figure 36.  Proportion of time at liberty per management zone for recaptured male sandbar sharks 
released in different management zones. Bars represent the proportional time 
(interpolated) each recaptured individual spent per management zone. Red dots denote 
size at release and recapture. Individuals are sorted in descending order by their size at 
release. A reference key with four arbitrary Fork Length (FL) sizes is provide in the top 
right panel for comparative purposes only. WANCSF: Western Australia North Coast 
Shark Fishery; Ningaloo: Ningaloo closure; WCDGDLF: West Coast Demersal Gillnet 
and Demersal Longline (Interim) Managed Fishery; Zone 1: Zone 1 of the Joint Authority 
Southern Demersal Gillnet and Demersal Longline Managed Fishery; Zone 2: Zone 2 of 
the Joint Authority Southern Demersal Gillnet and Demersal Longline Managed Fishery 
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4. Results  

4.1 Acoustic tagging 

A summary of the characteristics of the tagged and detected individuals is shown in Table 16. 
A total of 103 dusky, 101 sandbar, 100 gummy, and 40 whiskery sharks were implanted with 
acoustic transmitters. The size frequency distributions of the tagged sharks are shown in 
Figure 37. For all four species, tagged individuals were close to or above the size at 50% 
maturity. For all species, the sex ratio was biased towards females. Of the tagged sharks, 60 
dusky, 55 sandbar, 33 gummy and 13 whiskery sharks have been detected. In addition, 53 
bronze whaler sharks were implanted with acoustic transmitters and 46 individuals have been 
detected (Table 16). For this species, the sex ratio was also biased towards females.  

The mean number of days between release and first detection was lower for bronze whaler 
and dusky sharks than for the other species. On average, sandbar and dusky sharks were 
monitored for longer periods than bronze whaler, gummy and whiskery sharks (Table 16). 
Bronze whaler and sandbar sharks had the largest number of detections, mostly in the Perth 
and Ningaloo arrays, respectively, followed by dusky sharks, which showed a more even 
number of detections in the three arrays. Gummy and whiskery sharks had considerably less 
detections, and were, unsurprisingly, not detected in the Ningaloo array. Finally, bronze 
whaler and dusky sharks were detected by the largest number of receivers, followed by 
gummy, sandbar and whiskery sharks (Table 16). 

Table 16.  Data summary for all individuals tagged in Western Australia and for individuals tagged in 
South Australia and detected in Western Australia 

Variable Dusky Sandbar Gummy Whiskery Bronze whaler 

Tagged      

N° of individuals 103 101 100 40 53 

Mean FL (SD) 242(32) 141(8) 102(10) 112(9) 222(18) 

Sex ratio (male:female) 1:1.8 1:1.8 1:3.2 1:2.3 1:2.8 

Detected      

Total N° individuals 60 55 33 13 46 

Mean FL (SD) 241(34) 142(9) 103(10) 110(8) 222(18) 

N° ind. detected in the Ningaloo array 39 55 0 0 2 

N° ind. detected in the Perth array 32 2 5 0 41 

N° ind. detected in the Southern Lines array 37 1 32 13 40 

Sex ratio (male:female) 1:1.8 1:2.6 1:7.2 1:2.2 1:4.1 

N°  days between release and first 
detection 

     

Mean (SD) 89(124) 148(216) 158(150) 228(302) 15(45) 

Max 623 1020 611 952 193 

Min 0 0 0 1 0 
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Variable Dusky Sandbar Gummy Whiskery Bronze whaler 

N° days monitored      

Mean (SD) 668(382) 730(439) 377(312) 293(356) 475(318) 

Max 1453 1325 1087 1062 1016 

Min 1 1 9 1 1 

N° days between first and last detection      

Mean (SD) 580(364) 581(484) 220(264) 65(127) 460(329) 

Max 1331 1259 952 453 1016 

Min 1 1 1 1 1 

Total N° detections 11821 121154 2509 492 150062 

N° detections in the Ningaloo array 7318 121095 0 0 18 

N° detections in the Perth array 1167 6 45 0 149280 

N° detections in the Southern Lines array 3336 53 2464 492 764 

Total  N° receivers detecting individuals 205 60 107 35 215 

 

 

Figure 37.  Size frequency distribution of tagged individuals 
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For the four intended study species, the proportion of detections per array is shown in Figure 
38. Most detected dusky sharks were detected in all three arrays. Sandbar sharks were 
detected in all three arrays but predominately in Ningaloo. Most gummy sharks were detected 
in the Southern Lines array, although five individuals were also detected in the Perth array. 
Whiskery sharks were only detected in the Southern Lines array.  

 

Figure 38.  Proportion of detections per array. Barplot showing the proportion of detections (all 
individuals of the same species combined) by array for each species 

The number of individuals detected in more than one array is shown in Table 17. For dusky 
sharks, 13 individuals were detected in the three arrays and a considerable number of 
individuals were detected in two arrays. For sandbar sharks, only one individual was detected 
in the three arrays and only one or two individuals were detected in two arrays. For gummy 
sharks, four individuals were detected in the Perth and Southern Lines arrays. No whiskery 
sharks were detected in more than one array. 

Table 17.  Number of individuals detected in more than one array 

 
Ningaloo & Perth & 

Southern Lines 
Ningaloo & 

Perth 
Ningaloo & 

Southern Lines 
Perth & 

Southern Lines 

Dusky shark 13 16 16 29 

Sandbar shark 1 2 1 1 

Gummy shark 0 0 0 4 

Whiskery shark 0 0 0 0 
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There were no significant differences in the size distribution, sex ratio and release condition 
of tagged and detected individuals (Table 18). For sandbar sharks, all tagged individuals had a 
release condition of 1 so no test was performed.  

Table 18.  Statistical comparison between the size at release (Kolmogorov-Smirnov test), sex ratio 
and release condition (Pearson's Chi-squared Test) of tagged and detected individuals 

 
Size comparison 

p value 
Sex ratio comparison 

p value 
Release condition 

comparison p value 

Dusky shark 0.99 0.88 0.12 

Sandbar shark 0.99 0.38 — 

Gummy shark 0.82 0.23 0.93 

Whiskery shark 0.99 0.99 0.46 

Of the acoustically tagged individuals, one dusky, one bronze whaler, one sandbar, 32 gummy 
and 9 whiskery sharks were recaptured by commercial and recreational fishers and reported 
(Table 19). 

Table 19.  Release and recapture information on recaptured sharks as of December 2015 

Species Sex Date Release Recapture 

  Release Recapture Latitude Longitude Latitude Longitude 

Dusky shark M 2011-06-28 2011-10-13 -22.40 113.70 -14.10 123.55 

Bronze whaler 
shark M 2013-06-15 2014-03-03 -35.05 118.03 -35.10 115.97 

Gummy shark F 2013-05-28 2013-12-16 -34.39 115.34 -34.44 121.13 

Gummy shark F 2012-12-07 2013-02-24 -34.33 115.22 -34.53 115.36 

Gummy shark F 2012-07-07 2013-06-20 -34.79 118.45 -34.92 118.42 

Gummy shark F 2013-04-14 2015-07-01 -34.50 115.43 NA NA 

Gummy shark F 2013-04-14 2013-05-06 -34.49 115.40 -34.43 115.50 

Gummy shark F 2013-04-14 2013-04-29 -34.49 115.40 -34.64 115.65 

Gummy shark F 2013-04-15 2013-04-24 -34.34 115.36 -34.33 115.36 

Gummy shark M 2013-04-15 2014-01-17 -34.35 115.38 -34.42 115.27 

Gummy shark F 2012-07-06 2014-02-07 -34.78 118.82 -34.50 120.25 

Gummy shark M 2012-07-04 2013-10-07 -34.74 118.94 -32.54 125.87 

Gummy shark M 2012-07-04 2013-04-02 -34.74 118.94 -34.68 118.92 

Gummy shark F 2012-07-01 2013-06-01 -34.54 118.93 -34.98 118.77 

Gummy shark F 2012-07-01 2012-11-17 -34.57 118.97 -34.76 119.36 

Gummy shark M 2012-07-01 2014-11-15 -34.54 118.93 -34.80 119.03 

Gummy shark F 2012-07-01 2014-05-04 -34.57 118.97 -34.81 118.44 

Gummy shark F 2012-07-01 2013-03-10 -34.57 118.97 -34.72 119.06 
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Species Sex Date Release Recapture 

  Release Recapture Latitude Longitude Latitude Longitude 

Gummy shark F 2012-07-01 2014-08-28 -34.57 118.97 -34.28 121.08 

Gummy shark F 2012-07-01 2014-07-14 -34.57 118.97 -34.04 123.38 

Gummy shark F 2012-07-01 2013-10-12 -34.57 119.05 -33.47 115.11 

Gummy shark F 2012-07-01 2013-04-03 -34.57 119.05 -34.59 119.12 

Gummy shark F 2013-05-28 2013-12-16 -34.39 115.34 -34.41 121.11 

Gummy shark F 2013-05-15 2014-01-22 -34.57 115.62 -33.18 125.97 

Gummy shark F 2013-05-15 2014-09-24 -34.56 115.62 -34.49 115.80 

Gummy shark F 2012-07-01 2013-06-01 -34.57 118.97 -35.00 119.00 

Gummy shark F 2012-07-01 2012-08-21 -34.57 119.01 -34.55 119.07 

Gummy shark F 2012-07-01 2013-03-22 -34.57 119.01 -34.69 118.78 

Gummy shark F 2012-07-01 2015-06-07 -34.57 119.01 -34.65 118.82 

Gummy shark F 2012-05-30 2013-11-21 -34.32 115.22 -34.58 115.40 

Gummy shark F 2012-07-01 2013-04-30 -34.57 119.01 -34.48 118.98 

Gummy shark F 2012-07-01 2012-12-01 -34.57 119.01 -35.00 119.00 

Gummy shark F 2012-07-01 2013-03-18 -34.57 119.01 -34.91 118.62 

Sandbar shark F 2012-05-26 2015-04-27 -23.04 113.70 -19.78 116.03 

Whiskery shark F 2013-05-16 2014-02-01 -34.70 115.65 -35.00 119.00 

Whiskery shark F 2012-11-23 2014-02-01 -34.61 115.28 -34.62 115.43 

Whiskery shark F 2012-11-17 2013-06-01 -34.30 115.01 -35.00 119.00 

Whiskery shark F 2012-07-05 2014-11-15 -34.79 118.51 -34.80 119.03 

Whiskery shark F 2013-05-16 2013-10-17 -34.68 115.67 -34.70 115.64 

Whiskery shark F 2013-05-15 2014-09-17 -34.64 115.69 -34.52 115.15 

Whiskery shark M 2012-07-01 2013-06-01 -34.57 118.97 -34.53 118.81 

Whiskery shark F 2012-07-01 2013-06-01 -34.57 119.01 -35.00 119.00 

Whiskery shark F 2012-07-02 2013-03-31 -34.61 118.99 -34.63 118.96 
 NA: No recapture location provided 

4.1.1 Residency 

Detected sharks were labelled by combining the common name initials (e.g. DS for dusky 
shark) and chronological order of tagging. For dusky sharks, individuals were only detected 
briefly within arrays during the monitored period, reflecting the high mobility of this species 
(Figure 39). For sandbar sharks, the proportion of time detected was also generally low but 
several individuals that were monitored for a substantial period of time were detected 
regularly (Figure 39). For gummy and whiskery sharks, most detected individuals were 
detected for a small proportion of the monitored time (Figure 40).  

The Ningaloo array recorded by far the highest number of detections. Hence, a detailed 
summary of the number of detections by month is presented for each shark detected in this 
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array (Table 20). Very few dusky sharks were detected in most months. In contrast, several 
sandbar sharks were detected in most months with nine individuals (most of them above L50) 
being detected in all months. 

Presence/absence timeline-plots show the residency patterns within the detection arrays and 
the movements between regions. Dusky sharks were detected within the three arrays with 
most individuals being detected within at least two arrays (Figure 41). In general, dusky 
sharks were not detected within the arrays for very long periods and showed very complex 
movement patterns. Also, most sharks showed a considerable period of time between 
detections in different arrays. In addition, 55 individuals (382 trajectories) undertook long-
scale movements (>100 km), of up to 2,098 km at ROMs of up to 107 km per day (Table 21). 
(NB, trajectories were calculated over straight-line distances so the reported distances and 
ROMs are minimum averages.) 

Male dusky sharks tagged in southern WA were mostly detected in the Perth and Southern 
Lines receivers although DS.26, which corresponds to a male above the size at 50% maturity 
(L50) was detected in the Perth and Southern Lines arrays, then in the Ningaloo array and then 
again in the Perth and Southern Lines arrays. Three of the female dusky sharks tagged in 
southern WA were only detected in the Perth and Southern Lines receivers whereas DS.20 
which corresponds to a female above L50 was first detected within the Ningaloo array and 
then within the Perth and Southern Lines arrays (Figure 41).  
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Figure 39.  Proportion of time detected for dusky and sandbar sharks. The tag Identification Number (ID) is shown on the X-axis. The bars show the 
proportion of days detected within the monitored areas (i.e. the number of days between release and the last detection). The total number of days 
monitored are shown on top of each bar 
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Figure 40.  Proportion of time detected for gummy and whiskery sharks. The tag Identification Number (ID) is shown on the X-axis. The bars show the 
proportion of days detected within the monitored areas (i.e. the number of days between release and the last detection). The total number of days 
monitored are shown on top of each bar 
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 Table 20.  Number of days per month and total number of days detected in the Ningaloo array. Note 
that years were combined so the maximum number of days per month is ~120 (4 years) 

Species Tag ID Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Dusky DS.35  0   0   0  0   0  0  0  1  0   0   0   0 

 DS.93  0   0   1  0   0  0  0  0  0   0   0   0 

 DS.29  0   0   0  0   0  0  0  0  0   2   0   0 

 DS.67  2   0   0  0   0  0  0  0  0   0   0   0 

 DS.83  0   0   0  2   0  0  0  0  0   0   0   0 

 DS.86  0   0   0  0   0  0  0  0  2   0   0   0 

 DS.26  0   2   0  0   1  0  0  0  0   0   0   0 

 DS.38  0   2   1  0   0  0  0  0  0   0   0   0 

 DS.42  0   0   0  0   0  0  0  2  0   1   0   0 

 DS.79  0   0   0  2   0  0  0  0  0   0   0   1 

 DS.20  0   0   0  0   1  0  0  0  0   3   0   0 

 DS.47  2   0   0  0   0  0  0  3  0   0   0   0 

 DS.73  2   0   0  0   1  0  0  2  0   0   0   0 

 DS.27  3   0   0  3   0  0  0  0  0   0   0   0 

 DS.48  2   0   0  3   0  0  0  1  0   0   0   0 

 DS.34  2   0   0  0   0  2  0  2  0   0   1   0 

 DS.51  3   1   0  0   1  0  0  2  0   0   0   0 

 DS.49  6   0   1  0   0  0  0  1  0   0   0   0 

 DS.30  3   0   0  0   4  0  0  0  0   3   0   0 

 DS.84  0   0   3  5   0  0  0  2  0   0   0   0 

 DS.15  3   1   7  0   0  0  0  0  0   0   0   0 

 DS.36  0   0   0  4   0  0  0  8  0   0   0   0 

 DS.33  2   0   4  0   0  0  0  4  0   3   0   0 

 DS.39  0   0   0  0   0  0  1  4  2   5   1   0 

 DS.53  4   0   0  0   2  0  0  3  4   0   0   0 

 DS.28  7   0   2  1   2  0  0  3  0   0   0   0 

 DS.32  0  13   0  0   0  0  0  2  0   0   0   0 

 DS.14 10   0   0  0   0  0  0  2  6   0   0   0 

 DS.12  0   4   8  5   0  2  0  0  0   0   0   0 

 DS.37  9   1   0  0   3  0  0  7  0   0   0   0 

 DS.8  2   6   1  3   4  0  2  2  0   0   0   0 

 DS.11  4   4  12  2   0  0  0  0  0   0   0   0 

 DS.52  7   0   3  4   0  0  0 12  0   0   0   0 

 DS.75  0   0   0  0   0  9  9  0  5   2   9   0 

 DS.10  6  25  13  3   1  0  0  0  0   0   0   0 

 DS.41 13   6   6 15   1  0  0  8  0   2   0   0 
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Species Tag ID Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

 DS.13  9  11  32 25   0  6  2  7  0   0   0   0 

 DS.74 12  12   6  6   7  5 11 18  7   9   5   6 

 DS.44 27   2  17 35  20  0  3 16 20   3   1  12 

Sandbar SS.10  0   0   0  1   0  0  0  0  0   0   0   0 

 SS.6  0   0   0  0   0  0  1  0  0   0   0   0 

 SS.80  0   0   0  0   0  0  0  0  0   0   1   0 

 SS.88  0   0   0  1   0  0  0  0  0   0   0   0 

 SS.91  0   0   0  1   0  0  0  0  0   0   0   0 

 SS.93  0   0   0  0   0  0  1  0  0   0   0   0 

 SS.101  0   2   0  0   0  0  0  0  0   0   0   0 

 SS.27  0   0   0  0   0  1  0  1  0   0   0   0 

 SS.54  0   0   0  0   0  1  1  0  0   0   0   0 

 SS.57  0   0   0  0   0  0  0  0  0   2   0   0 

 SS.66  2   0   0  0   0  0  0  0  0   0   0   0 

 SS.77  0   0   0  0   0  0  0  0  1   0   1   0 

 SS.85  0   0   0  0   0  0  0  0  0   0   1   1 

 SS.5  3   0   0  0   0  0  0  0  0   0   0   0 

 SS.70  0   0   0  0   0  0  0  0  0   0   1   2 

 SS.100  0   1   0  0   3  0  0  0  0   0   0   0 

 SS.11  0   2   2  0   0  0  0  0  0   0   0   0 

 SS.78  0   1   0  3   0  0  0  0  0   0   0   0 

 SS.86  0   0   2  0   2  0  0  0  0   0   0   0 

 SS.94  0   1   0  1   0  1  0  0  0   0   0   1 

 SS.1  2   2   1  0   0  0  0  0  0   0   0   0 

 SS.14  0   0   0  3   0  1  0  0  0   0   1   0 

 SS.15  0   0   3  0   0  0  0  0  0   0   2   0 

 SS.21  0   2   2  1   0  0  0  0  0   0   0   0 

 SS.68  0   2   0  3   0  0  0  0  0   0   0   0 

 SS.81  1   0   0  1   0  1  0  0  0   2   2   0 

 SS.82  0   0   0  0   0  0  0  0  0   5   2   0 

 SS.87  3   0   0  1   0  0  0  3  0   0   0   0 

 SS.19  1   0   0  1   0  0  1  1  0   4   0   0 

 SS.25  0   2   2  0   0  0  0  0  0   2   0   2 

 SS.28  0   0   0  0   0  0  1  0  0   0   3   4 

 SS.7  0   2   0  0   3  0  0  0  0   3   0   0 

 SS.76  0   0   0  0   0  0  0  1  2   2   0   3 

 SS.43  0   0   0  2   1  0  0  0  0   5   1   0 

 SS.18  0   0   0  1   3  0  1  0  0   2   0   3 
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Species Tag ID Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

 SS.97  1   1   0  2   0  1  1  4  0   0   0   0 

 SS.30  0   0   5  0   5  0  1  0  0   0   0   0 

 SS.90  0   0   2  3   0  5  0  0  1   0   0   0 

 SS.4  4   0   2  1   0  1  1  4  0   0   0   0 

 SS.84  0   1   4  3   5  0  0  0  0   0   0   0 

 SS.20  1   2   0  3   0  0  0  2  4   0   2   0 

 SS.98  4   2   3  1   0  2  0  1  0   1   1   1 

 SS.9  0   3   0  4   0  0  0  0  0   0   5   5 

 SS.3  0   3   0  3   0  0  0  0  0  11   2   0 

 SS.8  0   4   2  0   5  1  1  0  0   5   0   2 

 SS.92  2   2   0  5   2  7  5  3  3   0   2   2 

 SS.89  7   3   3  4   6 20 21  7  2   8  18  14 

 SS.17 26   8  10  3   7 24 32  5  3  11   9  20 

 SS.26 14  22  17 10  10 49 11 25 10  15  52  65 

 SS.74 14  56  42 47  35 31 12 21 15  29  27  28 

 SS.61 54   0   9  0  32 84 73 12  0  71  93  93 

 SS.12 26  20  57 35 102 99 60 14 27 121 109 108 

 SS.24 24  88  65 70  64 75 61 34 59  84  91  84 

 SS.23 17 111 100 78  90 66 44 54 64  98 100  82 

 SS.22 68  97 103 86 118 72 71 73 83 118 103  78 

 

Male dusky sharks tagged in northern WA showed a range of different behaviours. Some 
individuals (e.g. DS.46, DS.87, DS.68, DS.64) were detected within the Perth and Southern 
Lines arrays only. Other individuals were only detected within the Ningaloo array (DS.27) or 
within the Ningaloo and Perth arrays (DS.47). Other individuals (DS.38) were detected in the 
Perth and Southern Lines arrays and then within the Ningaloo array. The most complex 
behaviours were shown by DS.11, DS.28 and DS.49. These sharks showed multiple detections 
between the Ningaloo, Perth and Southern Lines arrays. For example, DS.11 was first detected 
within the Ningaloo array, then detected within the Southern Lines array about a year after. 
Then, within a few months, it was detected in the Ningaloo, Perth and Southern Lines arrays. 
The next detection was about a year after within the Southern Lines and Perth arrays and it was 
finally detected within the Ningaloo array almost 3.5 years from the initial detection (Figure 41). 
Female dusky sharks tagged in northern WA showed similarly complex movement patterns. 
Some females were detected exclusively in the Ningaloo array on few occasions (e.g. DS.79 (a 
female below L50) and DS.86 (a female above L50)) or consistently for long periods of time (e.g. 
two females above L50: DS.13, detected for 3 years, and DS.44, detected for almost two years). 
Other individuals were detected within the Ningaloo and Southern Lines arrays, and then back 
in the Ningaloo array (e.g. DS.8), or within the Ningaloo and Perth arrays, and then back in the 
Ningaloo array (e.g. DS.36), or within the Ningaloo, Perth and Southern Lines arrays, and then 
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back in the Ningaloo array (e.g. DS.33). Other individuals were detected only in the Perth and 
Southern Lines arrays (e.g. DS.66). Finally, other females (DS.10, DS.14, DS.41) showed 
multiple movements between the Ningaloo, Perth and Southern Lines arrays. For example, 
DS.41 was first detected within the Ningaloo array, then detected within the Southern Lines 
array about six months from the first detection in Ningaloo. Then, after several months, it was 
detected in the Ningaloo, Perth and Southern Lines arrays. The next detection was about six 
months after in the Ningaloo array with the final detection in the Perth array, almost 2.5 years 
from the initial detection (Figure 41). 

 

Figure 41.  Daily presence/absence of tagged dusky sharks within the three arrays (colour coded). 
The ‘R’ indicates the management zone where the shark was released. Tag codes are 
split into males (blue) and females (pink) and ordered by release zone. The * next to the 
tag Identification Number (ID) indicates sharks with a Fork Length (FL) larger than the FL 
at 50% maturity. The date axis is labelled in steps of six months starting on the date the 
first shark was tagged 
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Table 21.  Summary of long-distance (>100km) displacements between consecutive detections in 
different arrays or between detections and reported recapture 

 Dusky Sandbar Gummy Whiskery 

Total number of trajectories 382 25 80 8 

Total number of sharks 55 18 26 7 

Mean distance (km) 409 301 238 241 

Maximum distance (km) 2098 1091 969 374 

Mean ROM (km/day) 33 14 23 15 

Maximum ROM (km/day) 107 63 65 45 

 

For individuals detected in multiple arrays, movements from the Ningaloo array to the Perth 
or Southern Lines arrays occurred mostly during the warmer months whereas movements 
from the Perth or Southern Lines arrays to the Ningaloo array occurred mostly during the 
cooler months (Figure 42). 

For sandbar sharks, nearly all detections occurred at the Ningaloo array (Figure 43). However, 
18 individuals (25 trajectories) undertook long-scale movements, each trajectory of up to 
1,091 km at ROMs of up to 63 km per day (Table 21). Within the Ningaloo array, male and 
female sandbar sharks showed three different movement patterns: some individuals were 
detected continually within the Ningaloo array (e.g. SS.22, SS.23, SS.24). Other individuals 
were detected for long periods of time, interspersed with long periods of non-detection (e.g. 
SS.17, SS.61, SS.89). Finally, some individuals were only detected for a few days (e.g. SS.80, 
SS.82, SS.94). Two females above L50 were detected within the Ningaloo array and then 
within the Perth array (SS.100) or within the Perth and Southern Lines arrays (SS.101). These 
detection patterns occurred between February and April. 

For gummy sharks, individuals have been sporadically detected in the Perth and South coast 
arrays (Figure 44). Twenty-six detected individuals (80 trajectories) undertook long-scale 
movements, each trajectory of up to 969 km at ROMs of up to 65 km per day (Table 21).  
Four females were detected travelling between the Southern Lines and Perth arrays (GS.75, 
GS.77, GS.83, GS.90). These detection patterns occurred throughout the year (Figure 45). 

For whiskery sharks, individuals have been sporadically detected solely in the Southern Lines 
(Figure 46). Seven individuals (8 trajectories) undertook long-scale movements, each 
trajectory of up to 374 km at ROMs of up to 45 km per day (Table 21). 
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Figure 42.  Frequencies of dusky shark displacements between arrays by month and sex (females 
are shown in pink and males are shown in blue) 
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Figure 43.  Daily presence /absence of tagged sandbar sharks within the three arrays (colour coded). 
The ‘R’ indicates the management zone where the shark was released. Tag codes are 
split in males (blue) and females (pink) and ordered by release zone. The * next to the 
tag Identification Number (ID) indicates sharks with a Fork Length (FL) larger than the FL 
at 50% maturity. The date axis is labelled in steps of six months starting on the date the 
first shark was tagged 
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Figure 44.  Daily presence /absence of tagged gummy sharks within the three arrays (colour coded). 
The ‘R’ indicates the management zone where the shark was released. Tag codes are 
split in males (blue) and females (pink) and ordered by release zone. The * next to the 
tag Identification Number (ID) indicates sharks with a Fork Length (FL) larger than the FL 
at 50% maturity. The date axis is labelled in steps of six months starting on the date the 
first shark was tagged 
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Figure 45.  Frequencies of gummy shark displacements between arrays by month and sex (females 
are shown in pink and males are shown in blue) 
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Figure 46.  Daily presence /absence of tagged whiskery sharks within the three arrays (colour 
coded). The ‘R’ indicates the management zone where the shark was released. Tag 
codes are split in males (blue) and females (pink) and ordered by release zone. The * 
next to the tag Identification Number (ID) indicates sharks with a Fork Length (FL) larger 
than the FL at 50% maturity. The date axis is labelled in steps of six months starting on 
the date the first shark was tagged 
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Spatial detection patterns 

Dusky and sandbar sharks were detected in all three Ningaloo lines (Figure 47). In the 
northern line of the array, sandbar sharks were largely detected by two of the inshore 
receivers whereas dusky shark detections were more evenly distributed. In the central line of 
the array, there was a large percentage of dusky shark detections whereas few detections of 
sandbar sharks were recorded. In the southern line of the array, dusky sharks were evenly 
detected by most receivers whereas sandbar sharks were mostly detected by the offshore or 
inshore receivers.  

For the Perth array, detections of dusky sharks were fairly evenly distributed across the 
offshore receivers, (west of Rottnest Island and past the 50 m depth isobath), with a slightly 
higher number at the outermost receivers (Figure 48). For sandbar sharks, there were only six 
detection events, all at receivers west of the 50 m depth isobath. No detections for dusky or 
sandbar sharks were recorded east of Rottnest island. Detections were also fairly low for 
gummy sharks (n=45) and fairly uniformly spread across both shoreline receivers and 
receivers extending out to Rottnest island, as well as west of Rottnest up to approximately the 
100 m isobath. Whiskery sharks were not detected in this array.  

All species were detected in the Southern lines array, although detections were limited for 
sandbar (n=53) and whiskery (n=492) (Figure 49). For dusky, gummy and whiskery sharks, 
detections were distributed across the three receiver lines. Gummy sharks had a high number 
of detections on the eastern-most line (line 3) at receivers closest to the coast, just past the 50 
m isobath. Sandbar sharks were only detected in the western-most line, adjacent to Augusta, 
at deepwater receivers.  

For bronze whaler sharks, the spatial detection patterns observed are presented in Appendix 
4: Spatial detection patterns for bronze whaler sharks. 
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Figure 47.  Spatial movement patterns. Bubble plot of percentage of detections per receiver within 
the Ningaloo array. The black dots represent actual receiver locations from which 
detection frequency bubbles are offset for clarity 
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Figure 48.  Spatial movement patterns. Bubble plot of percentage of detections per receiver within 
the Perth array. The black dots represent actual receiver locations from which detection 
frequency bubbles are offset for clarity  
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Figure 49.  Spatial movement patterns. Bubble plot of percentage of detections per receiver within 
the Southern Lines array. The black dots represent actual receiver locations from which 
detection frequency bubbles are offset for clarity 

4.1.3 Rates of movement 

In general, for all species ROM increased with distance travelled (Figure 50). For small-scale 
displacements (<10 km) ROM was lower than for medium-scale displacements (between 10 
and 50 km), which, in turn, showed lower ROMs than large-scale displacements (>50 km). 
Comparisons among species’ ROMs showed that dusky sharks had the fastest ROMs for 
large-scale displacements, followed by sandbar, gummy and lastly whiskery sharks. 
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Figure 50.  Rate of Movement distributions for different displacement distances for each species. 

4.1.4 Daily patterns and co-detections 

The proportion of detections by array and hour of day is shown in Figure 51. For sandbar and 
gummy sharks, the detections in the Perth and Southern Lines, and in the Perth arrays, 
respectively, were removed from this figure given the very few number of observations. 
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Figure 51.  Proportion of detections by array and hour of day for each species 

The pattern of co-detection of different individuals of the same species within the same date-
hour is shown in Figure 52 and of different species is shown in Figure 53. For within species 
comparisons, up to two and three individuals of dusky and sandbar sharks, respectively, were 
detected within the same date-hour by the same receiver. For gummy and whiskery sharks, 
there were no co-detections (Figure 52). For between-species comparisons, up to four 
individuals of dusky and sandbar sharks were co-detected in the Ningaloo array whereas no 
co-detections of dusky and gummy, dusky and whiskery or gummy and whiskery were 
recorded in the Southern Lines array (Figure 53). 
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Figure 52.  Number of individuals of the same species detected at the same location (receiver) within 
the same date-hour 

 

Figure 53.  Number of individuals of the different species detected at the same location (receiver) 
within the same date-hour 
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4.1.5 Proportion of time per area 

The proportion of monitored time spent by each detected dusky shark within each area is 
shown in Figure 54. Very few individuals remained exclusively within their release area, 
reflecting their high mobility and complex movement patterns. For example, several 
individuals released in the Ningaloo area spent a considerable proportion of the time in areas 
south of Ningaloo.  

 

Figure 54.  Proportion of the monitored time spent by tagged dusky sharks per area. This includes 
detected and non-detected sharks that were recaptured. Also shown is the number 
monitored days for each shark. Individuals are ordered by the release area (left Y axis) 
and within each release area, by the monitored days (right Y axis). WANCSF: Western 
Australia North Coast Shark Fishery; Ningaloo: Ningaloo closure; WCDGDLF: West 
Coast Demersal Gillnet and Demersal Longline (Interim) Managed Fishery; Zone 1: Zone 
1 of the Joint Authority Southern Demersal Gillnet and Demersal Longline Managed 
Fishery; Zone 2: Zone 2 of the Joint Authority Southern Demersal Gillnet and Demersal 
Longline Managed Fishery 

The proportion of monitored time spent by each detected sandbar shark within each area is 
shown in Figure 55. Most individuals remained within the release area though some 
individuals released off the north and north-west coasts spent most the monitored time in the 
Ningaloo area. In addition, one individual released in the Ningaloo area spent about 30% of 
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the time in that array, whereas two individuals released in the Ningaloo area spent a 
considerable amount south of Ningaloo.  

It must be remembered that this analysis assumes straight-line movements between 
consecutive detections (see Figure 2). Hence, if a tagged sandbar shark was detected by one 
of the Ningaloo receivers, then not detected for some time and then detected again by one of 
the Ningaloo receiver, the assumption is that the shark stayed within the Ningaloo area. 

 

Figure 55.  Proportion of the monitored time spent by tagged sandbar sharks per area. This includes 
detected and non-detected sharks that were recaptured. Also shown is the number 
monitored days for each shark. Individuals are ordered by the release area (left Y axis) 
and within each release area, by the monitored days (right Y axis). WANCSF: Western 
Australia North Coast Shark Fishery; Ningaloo: Ningaloo closure; WCDGDLF: West 
Coast Demersal Gillnet and Demersal Longline (Interim) Managed Fishery; Zone 1: Zone 
1 of the Joint Authority Southern Demersal Gillnet and Demersal Longline Managed 
Fishery; Zone 2: Zone 2 of the Joint Authority Southern Demersal Gillnet and Demersal 
Longline Managed Fishery 

The proportion of monitored time spent by each detected gummy shark within each area is 
shown in Figure 56. Most individuals released in Zone 2 remained within that area, with the 
exception of three individuals which were also detected in Zone 1 (two individuals) and the 
Metro closure (1 individual). Most individuals released in Zone 1, in contrast, spent a 
considerable amount of time in other areas. 
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Figure 56.  Proportion of the monitored time spent by tagged gummy sharks per area. This includes 
detected and non-detected sharks that were recaptured. Also shown is the number 
monitored days for each shark. Individuals are ordered by the release area (left Y axis) 
and within each release area, by the monitored days (right Y axis). WANCSF: Western 
Australia North Coast Shark Fishery; Ningaloo: Ningaloo closure; WCDGDLF: West 
Coast Demersal Gillnet and Demersal Longline (Interim) Managed Fishery; Zone 1: Zone 
1 of the Joint Authority Southern Demersal Gillnet and Demersal Longline Managed 
Fishery; Zone 2: Zone 2 of the Joint Authority Southern Demersal Gillnet and Demersal 
Longline Managed Fishery 

The proportion of monitored time spent by each detected whiskery shark within each area is 
shown in Figure 57. Almost all individuals remained within the release area, with the 
exception of two individuals released in Zone 1 which were detected in Zone 2 and two 
individuals released in Zone 2 which were detected in Zone 1. 
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Figure 57.  Proportion of the monitored time spent by tagged whiskery sharks per area. This includes 
detected and non-detected sharks that were recaptured. Also shown is the number 
monitored days for each shark. Individuals are ordered by the release area (left Y axis) 
and within each release area, by the monitored days (right Y axis). WANCSF: Western 
Australia North Coast Shark Fishery; Ningaloo: Ningaloo closure; WCDGDLF: West 
Coast Demersal Gillnet and Demersal Longline (Interim) Managed Fishery; Zone 1: Zone 
1 of the Joint Authority Southern Demersal Gillnet and Demersal Longline Managed 
Fishery; Zone 2: Zone 2 of the Joint Authority Southern Demersal Gillnet and Demersal 
Longline Managed Fishery 

The number of individuals of each species that moved to adjacent areas (Figure 58) and non-
adjacent areas (Figure 59) at different time scales provides further information about species’ 
mobility patterns. Dusky sharks showed the highest number of individuals moving to adjacent 
and non-adjacent zones. In addition, dusky sharks took considerable less time for undertaking 
those movements. 
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Figure 58.  Movement among adjacent areas. The barplot shows the number of individuals of each 
species that moved to an adjacent area (top and centre panels) the minimum number of 
days these individuals took to move to an adjacent area (bottom panel)  

 

Figure 59.  Movement among non-adjacent areas. The barplot shows the number of individuals of 
each species that moved to a non-adjacent area (top and centre panels) the minimum 
number of days these individuals took to move to a non-adjacent area (bottom panel) 
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4.1.6 Seasonal migration of dusky sharks 

Larger dusky sharks showed regular displacements between the northern (Ningaloo array) and 
the southern (Perth and Southern Lines arrays) arrays. For both female (Figure 60) and male 
(Figure 61), most of the north to south and the south to north movements occurred within a 
year or less than a year (e.g. DS.41, DS.49). In WA, the lowest water temperature occurs 
during winter and spring whereas the highest water temperature occurs during summer and 
autumn (Caputi et al. 2009). Large males were detected at Ningaloo exclusively during winter 
and spring whereas during summer and autumn they were only detected in the Perth and 
Southern lines (Figure 61). Large females, however, showed a more complex pattern (Figure 
60). Some individuals conformed to a ‘north in winter‒spring and south in summer‒autumn’ 
pattern (e.g. two individuals with a FL of 230 cm) whereas other individuals were 
consistently detected north in all seasons (e.g. individuals of 259 and 260 cm FL). 

 

Figure 60.  Daily presence/absence of tagged female dusky sharks in northern (Ningaloo array) and 
southern (Perth and Southern Lines arrays) Western Australia. Tagged individuals are 
sorted by fork length (FL). The Winter‒Spring seasons are shaded in blue whereas the 
Summer‒Autumn seasons are not shaded. The open circle shows the release location 
and date 
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Figure 61.  Daily presence /absence of tagged male dusky sharks in northern (Ningaloo array) and 
southern (Perth and Southern Lines arrays) Western Australia. Tagged individuals are 
sorted by Fork Length (FL). The Winter‒Spring seasons are shaded in blue whereas the 
Summer‒Autumn seasons are not shaded. The open circle shows the release location 
and date 

Movement patterns were strongly related to sharks’ sizes. Smaller individuals of both sexes 
were only detected by the Perth and Southern lines whereas larger individuals showed 
north‒south displacements to and from Ningaloo Reef (Figure 60 and Figure 61). Mean 
(±95% credible intervals, CI) size at 50% migration of females and males was very similar 
(223 ± 6 and 222 ± 12 cm FL, respectively) (Figure 62). This pattern was consistent across all 
individuals, which displayed similar levels of variation in their migratory behaviour. The 
probability of occurring at Ningaloo varied with month and sex. There was a higher 
probability of being detected in the north during the austral winter/spring than during the 
austral summer/autumn (Figure 62). For the austral winter/spring period, the probability of 
occurring at Ningaloo was > 0.9 for females and 0.72 for males, whereas for the austral 
summer/autumn period, this probability was ~0.5 for both sexes. For males, model estimates 
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had higher uncertainty (e.g. the lower limit of the 95% CI was close to zero between 
December and April, Figure 62) because there was little contrast in the presence/absence of 
sharks at Ningaloo Reef due to the limited number of detections in this location during 
summer/autumn (Figure 61). 

 

Figure 62.  Dusky shark migration. The upper panel shows the probability of migrating north in 
January and August for different sizes of female and male dusky sharks with associated 
95% Credible Intervals (CI). The lower panel shows the monthly probability of migrating 
north for female and male dusky sharks with associated 95% CIs. 

4.1.7 Exchange rates of gummy and whiskery sharks 

Annual movement rates among management zones were different between species and, for 
each species, also varied among zones (Figure 63). For gummy sharks, individuals occurring 
in the West Coast showed a high probability of moving to Zone 1 (0.46) and a moderate 
probability of staying in the West Coast (0.36). In turn, individuals occurring in Zone 1, 
showed a high probability of moving to Zone 2 (0.46) and a moderate probability of staying 
in Zone 1 (0.36). Finally, individuals occurring in Zone 2 showed a very high probability of 
not moving (0.97).  
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For whiskery sharks, there was a very high probability (0.83, 0.87, 0.94 for the West Coast, 
Zone 1 and Zone 2, respectively) of staying in the same zone. For all zones, there was a 
moderate (0.15 for individuals moving from the West Coast to Zone 1) to low probability 
(0.06 for individuals moving from Zone 2 to Zone 1) of moving to an adjacent zone. Finally, 
the probability of moving to a non-adjacent zone was negligible. 

 

Figure 63.  Movement transition matrix showing the annual probability of movement among 
management zones for gummy and whiskery sharks 

4.2 Catch and effort standardisation 

4.2.1 Data and model selection  

 The selection of indicative vessels removed several vessels from the total number of 
vessels providing ‘good’ records; however, the proportion of the total catch explained by the 
indicative vessels was very high (Figure 64). In all, the indicative vessels accounted for >80% 
of the total catch of each species. 
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Figure 64.  Annual trends in the number of vessels (‘good’ records only) within each species’ 
effective effort areas. Also shown is the total annual catch of each species (‘good’ 
records only) within its effective effort areas  

The summary statistics for the selected models are shown in Table 22. For the positive 
records, the AIC and percentage of deviance explained analyses selected the same model 
structure for the lognormal and gamma distributions. However, based on residual 
distributions and Box-Cox likelihoods the lognormal error provided the best fit for all 
species. This error structure was then used to standardise catch and effort. The selected 
models used to estimate the probability of positive catches explained between 37% and 86% 
of the deviance whereas for the positive catch records the selected models explained between 
35% and 41% of the deviance (Table 22). For the positive catch records, diagnostic plots are 
provided in Figure 65. The q-q plots were generally consistent with the expected linear 
pattern of a lognormal distributed error (upper panel), which had a fairly normal distribution 
(mid panel). Finally, there were no systematic departures from the expected mean of zero and 
constant variance across the range of expected values (lower panel).   
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Table 22.  Deviance explained for the best Generalized Linear Model and error structure fitted to the 
catch and effort data. Prob.Ktch, probability of positive catch 

Model structure  Deviance 
explained (%) 

Presence/absence   
Whiskery shark 

Prob.Ktch~Yr+Block+Ves+log(Gummy_c)+log(Dusky_c)+log(km.gn.d) 

 37 

Gummy shark 

Prob.Ktch~Yr+Block+Ves+Mn+log(Whiskery_c)+log(Dusky_c)+log(km.gn.d) 

 72 

Dusky shark 

Prob.Ktch~Yr+Block+Ves+log(Gummy_c)+log(Whiskery_c)+log(km.gn.d) 

 62 

Sandbar shark 

Prob.Ktch~Yr+Block+Ves+Mn+log(Gummy_c)+log(Whiskery_c)+log(Dusky_c) 
+log(km.gn.d) 

 86 

Positive records only   

Whiskery shark  

log(Ktch)~YrBlock+Ves+Mn+log(km.gn.d) 

 40 

Gummy shark 

log(Ktch)~YrBlock+Ves+Mn+log(km.gn.d) 

 38 

Dusky shark 

log(Ktch)~YrBlock+Ves+Mn+log(Whiskery_c)+log(km.gn.d) 

 41 

Sandbar shark  

log(Ktch)~YrBlock+Ves+Mn+log(km.gn.d) 

 35 
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Figure 65.  Model fit diagnostics for the postive catch records. q-q plots (upper panels); distribution of 
standardised residuals (middle panels); standardised residuals vs expected values (lower 
panels) 

4.2.2 Construction of standardised CPUE time series  

The effect of calculating nominal CPUE as the ratio of total annual catch to total annual effort 
[‘folly’ approach as per Walters (2003)] or as the annual average of each record’s CPUE is 
shown in Table 23. Only when catch is proportional to effort (Case 1) do the two methods for 
calculating CPUE yield the same value. In other cases, the ‘folly’ approach is not 
recommended (Walters 2003). 
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Table 23.  Hypothetical example of the effect of calculating nominal Catch per Unit of Effort (CPUE) 
as the ratio of total annual catch to total annual effort or as the annual average of each 
record’s CPUE 

  

Catch 

Vessel Effort Case 1 Case 2 Case 3 

A 10 100 100 1000 

B 20 200 200 2000 

C 30 300 300 3000 

D 40 400 0 400 

E 50 500 500 500 

F 60 600 0 600 

G 70 700 700 700 

H 80 800 0 800 

I 90 900 900 900 

J 100 1000 1000 1000 

   CPUE  

Method Case 1 Case 2 case 3 

Mean 10 7 37 

SD 0 4.83 43.47 

Sum 10 6.73 19.82 

SD 0 0 0 

The standardised CPUE series resulting from application of the methods described above were 
reviewed at different spatial scales to assess their applicability as indices of each stock’s relative 
abundance. Overall, like previous estimates of effective CPUE, standardisation model outputs 
indicated rapid increases in CPUE as fishing commenced, followed by equally rapid declines 
(Figure 66). However, unlike previous ‘effective’ CPUE series, apart from two spikes in the 
Zone 2 dusky shark data, standardised CPUE trends for whiskery and dusky sharks remained 
extremely stable in all zones since the mid-1980s. Another difference observed in the 
standardised data was the rapid decline in Zone 1 dusky and whiskery catch rates over the 
period spanning the introduction of new management and catch and effort reporting 
arrangements at the end of the 2005/06 fishing season. At a finer-scale, these differences were 
most-evident in blocks that had historically contributed large catches of these species to the 
overall catch (e.g. Figure 67) and therefore disproportionately influenced the overall trends for 
these species. These differences could not be readily explained but it is thought to be highly 
unlikely that they reflect real changes in the relative abundance of these stocks and are more 
likely a consequence of changes in management and/or reporting between these two years.  

Another feature of the standardised data was a notable spike in the West Coast fishery’s 
dusky shark CPUE in 2007/08. This corresponds to the year after fishing was prohibited in 
the metropolitan region, 35% of effort capacity was removed from the WCDGDLF through a 
Voluntary Fisheries Adjustment Scheme and the two largest and longest-term operators 
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retired from fishing. Similarly, this feature (together with a smaller subsequent spike) is not 
thought to reflect an actual change in abundance but is more probably due to changes in the 
spatial re-distribution of effort, new operators entering the fishery, reporting behaviour, etc. 
Furthermore, the metropolitan closure and northward redistribution of effort resulted in 
missing years of data from what had traditionally been important dusky and whiskery shark 
fishing grounds. As a result, data for these blocks were imputed from the last year’s 
coefficient value and the species’ intrinsic growth rate.   

 

Figure 66.  Time series of Catch per Unit of Effort (CPUE) standardisation model outputs (mean and 
95% CI, shaded area) for each species and relevant management zone, normalised to a 
mean value of 1 

Furthermore, there was a concern that by grouping daily records at a monthly level, information 
on changes in fishers’ behaviour between fishing trips in the same month would be omitted. By 
combining daily records into a single monthly record, inter-trip variability would therefore be 
smoothed with the  potential consequence of useful (i.e. a trip targeted at the species in 
questions) and misleading (i.e. a trip targeted at other species) information would be combined 
in the same record. Also, the transition from monthly returns to daily logbooks in combination 
with the implementation of several management measures (Borg and McAuley, 2004; DoF 
2008) seem to have introduced bias(es) in the reported the catch and effort data.  

For all of these reasons, there was a lack of confidence that standardised catch rate indices 
accurately reflected each stock’s abundance. While these data were useful for the development of 
assessment models, model outputs based upon these data were considered unreliable 
representations of changes in stocks’ abundance and have therefore not been presented. Further 
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investigation of these issues and development of techniques to resolve them is required. As these 
analyses have re-emphasised the incompatibilities between monthly return and daily logbook data, 
resolution is likely to involve the use of two separate indices in future stock assessments.       

 

Figure 67.  Example of the possible effect of changes in catch and effort reporting practices on the 
predicted catch of whiskery sharks in fishing block 3315. Period of monthly return data 
(1975-2006) is shaded. 

4.3 Population dynamics of whiskery and gummy sharks 
During construction of the population dynamics models, the models described in 3.3.7 (Modelling 
approach) were fitted to the effective CPUE historically used for the species assessments. 
However, no results are presented in this report because the construction of a standardised catch 
rate index that confidently reflects abundance was not achieved by the present study for the 
reasons detailed in 4.2.2 (Construction of standardised CPUE time series Once a reliable index of 
abundance is constructed, the models developed as part of the present study could be fitted to this 
and the other sources of information available described in 3.3.1 (Available data).  

4.4 Risk assessment of dusky and sandbar sharks 

4.4.1 Rationale for including issues 

4.4.1.1 Impact of extractive fishing in WA 

4.4.1.1.1 Temperate Demersal Gillnet & Demersal Longline Fisheries 

Dusky and sandbar sharks are two of the four main shark species targeted by the TDGLDF 
which are by far the largest extractive fisheries for these species in WA. Catches of dusky and 
sandbar sharks by the TDGDLF in 2013/14 were 190t and 45t, respectively but previously 
exceeded 585t and 235t, respectively. Due to the size selectivity of mesh sizes used in these 
fisheries (typically 16.5cm and 17.8cm stretched) and their area of operation, catches are 
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primarily composed of dusky sharks less than 2 years of age and sandbar sharks of between 6 
and 9 years of age (Simpfendorfer and Unsworth, 1998b; McAuley et al., 2007a, b). 

4.4.1.1.2 Recreational fishing  

Recreational fishing is a popular activity in WA with an estimated 691,000 participants in 
2011/12 (DoF 2012). Sharks are not specifically targeted but are still a component of the catch 
with reasonable quantities caught by boat-based fishers in the North Coast, Gascoyne Coast and 
West Coast bioregions (Ryan et al. 2013). Reliable, state-wide estimates of shore-based 
recreational catches are not currently available, although based on all available information, are 
not likely to be applicable to sandbar (or whiskery) sharks. An estimated 3958 whaler sharks 
(family Carcharhinidae, potentially including dusky and sandbar sharks) and an estimated 590 
sandbar sharks were caught in 2011/12. Of these, 3513 whaler sharks and 504 sandbar sharks 
were released. The accuracy of species identification in these data is unclear and it may be more 
reliable to consider these catches of ‘whaler’ and ‘sandbar’ sharks in combination. 

4.4.1.1.3 Northern Shark Fisheries 

The NSF comprise the state-managed WA North Coast Shark Fishery (WANCSF) and the 
Joint Authority Northern Shark Fishery (JANSF), which operated in the Pilbara/western 
Kimberley and eastern Kimberley, respectively, until 2009 (Molony et al. 2013). Historically, 
the primary fishing method used was demersal longline with a sporadic and relatively small 
amount of pelagic gillnetting in the JANSF. Between 1994 and 2009, the NSF targeted 
various species of shark including sandbar (C. plumbeus) and blacktip whaler sharks 
(Carcharhinus limbatus and Carcharhinus tilstoni) and hammerheads (Sphyrna spp.).  

4.4.1.1.4 Other WA Fisheries 

The wide distribution and movements of both dusky and sandbar sharks means there is the 
potential for interaction with many WA-managed marine fisheries. Successive quantitative 
assessments of fishing mortality on these stocks (McAuley et al. 2007a) demonstrated the 
importance of considering all potential sources of mortality beyond target fisheries, especially 
those that impact adult age-classes.  

4.4.1.1.5 Cumulative WA fishery impacts 

Dusky and sandbar sharks are potentially exposed to multiple threats that, cumulatively, may 
have greater an impact on the stock than individual threats. This category includes all sources 
of extractive fishing mortality (targeted and non-targeted) on dusky sharks under Western 
Australia’s management jurisdiction.  

4.4.1.2 Impact of external influences 

4.4.1.2.1 Non-WA extractive fisheries 

The areas occupied by western Australian populations of dusky and sandbar sharks overlap 
with most WA-managed fisheries. Although the extent of these populations’ overlap with 
other management jurisdictions is not fully understood, they are understood to be relatively 
minor and possibly intermittent. The boundaries and linkages of these and other populations 
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(e.g. Indonesia or eastern Australia) are also not entirely resolved. Although the magnitude of 
catches from these stocks in other jurisdictions has not been quantified, past and present 
sources of external mortality are known or suspected to include the Commonwealth managed 
Western Tuna and Billfish Fishery (WTBF) and Southern and Eastern Scalefish and Shark 
Fishery (SESSF), the South Australian Marine Scalefish Fishery (MSF) and Northern 
Territory Offshore Net and Line Fishery (ONLF), as well as illegal catches by Foreign Fishing 
Vessels near or within the Australian Exclusive Economic Zone (EEZ).  

4.4.1.2.2 Coastal and offshore development 

Coastal development and the increasing population of WA, potentially pose risks to a range 
of aquatic resources through loss or degradation of habitats and indirectly through increasing 
fishing pressure. While offshore development of WA’s petroleum and natural gas resources 
poses some potential risks, particularly in the North Coast Bioregion where there is a high 
level of exploration and development currently occurring, it is noted that dusky and sandbar 
sharks occupy very large ranges, across multiple habitats and are not known to exhibit any 
particular habitat or prey-specificity. Therefore, the risks of coastal and offshore development 
are only considered here for the sake of completeness.  

4.4.1.2.3 Environmental influences 

Oceanographic dynamics, in particular the influence of the warm, oligotrophic waters of the 
Leeuwin Current, are of major importance to the distribution and ecology of most marine 
species in WA (Caputi et al. 1996). A widespread and sustained period of unprecedented 
warm ocean temperatures (‘marine heat wave’) around the WA coast between 2011 and 2013 
had major consequences for a large number of the state’s aquatic resources (Pearce et al. 
2011, Wernberg et al. 2013), with some suggestion that this event may have altered the 
distribution of some shark species.  

4.4.2 Dusky shark 

4.4.2.1 Impact of extractive fishing in WA 

4.4.2.1.1 Temperate Demersal Gillnet & Demersal Longline Fisheries 

Issue C L Score Risk Rating 

Impact of TDGDLF neonate/juvenile catches 2 3 6 LOW 

Impact of TDGDLF juvenile/sub-adult catches 3 2 6 LOW 

Impact of TDGDLF adult catches 5 1 5 LOW 

Justification: Dusky sharks are born in WA waters south of the Abrolhos Islands between 
February and June at a mean length of 75.3 ±3.8 cm FL (Simpfendorfer et al 1999). The species 
does not use discrete coastal nursery areas and the range over which birthing occurs is thought 
to vary depending on the strength of the Leeuwin Current. Young are typically born in Zone 1 of 
the JASDGDLF or the west of Zone 2 in years with a stronger Leeuwin Current (Department of 
Fisheries, unpublished data). The 16.5 to 17.8cm gillnet mesh sizes that are predominantly used 
in the TDGDLF, are highly size-selective for this species (Simpfendorfer and Unsworth 1998); 
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landings are mainly comprised of 0+ individuals and 91% of sharks are <100cm FL (< 2 years 
old; McAuley and Simpfendorfer 2003). At lengths below 100 cm FL, juvenile dusky sharks 
primarily inhabit inshore waters of the continental shelf <100m depth (Braccini et al. in prep). 
Conventional tag-recapture data indicate that as they grow, juvenile dusky sharks undertake a 
gradual northwestern movement (Figure 33 and Figure 34; Simpfendorfer et al. 1999). In South 
Australia, juvenile dusky sharks of between 100 and 250 cm FL begin to traverse the continental 
shelf more widely using both shallow, protected waters including inner gulfs and embayments, 
and deeper waters out to the shelf-break (Rogers et al., 2013a). Assuming dusky sharks behave 
similarly in Western Australian waters, these factors may result in decreased susceptibility to 
capture by TDGDLF operators, who mostly operate in waters shallower than 100m and use 
fishing gear that is highly selective for smaller sharks.  

Since 2005/06, the trend in TDGDLF effective CPUE of dusky sharks has been variable but 
increasing (Braccini et al. 2014). Prior to this, management changes led to substantial 
rationalisation and reduction in fishing scale and intensity. Notable management events have 
included: a more than 60% reduction in the gear capacity of transferrable effort units and 
subsequent shift to an hourly effort management system; closure of waters <250m deep off 
the Perth metropolitan area between 31° S and 33° S and consequential  removal of 33% of 
WCDGDLF units through a Voluntary Fisheries Adjustment Scheme (VFAS); annual 2 
month seasonal closure of the fisheries west of 118⁰E between 2006 and 2014 and 
introduction of a maximum size limit (70cm interdorsal fin length, IDL) for dusky sharks. 
The number of vessels in the TDGDLF decreased from >100 during the 1980s to 26 presently 
(McAuley et al. 2015, Figure 7), the footprint of the fishery has stabilised from 58 to ~45 1 
degree blocks/year (Figure 7), and effort has decreased to around 35% of peak levels. 
Accordingly, the total catch of dusky sharks has been reduced from a peak of 585t in 1988/89 
to190 t in 2013/14 (Braccini et al., 2014).  

In addition to the increasing effective CPUE for dusky sharks since 2005/06, there is no 
evidence of changes in length or weight composition (Figure 25 and Figure 31) or the 
proportions of 0+ sharks within the catch (Figure 30). As such, it was considered that TDGDLF 
catches of neonate and juvenile dusky sharks pose a remote (L1) likelihood of causing major 
(C4) or catastrophic (C5) consequences to the stock. Given the substantial reduction in scale and 
intensity of fishing compared to historical levels (which, based on analyses of empirical fishing 
mortality estimates, were sustainable in 1994/95 and 1995/96, Simpfendorfer, 1999; McAuley 
et al., 2007a), unacceptably high levels of fishing (C3) are also considered unlikely (L2). 
However, as biomass estimates are not available for neonate/juvenile dusky sharks and fishing 
mortality rates have not been estimated for over 20 years (Braccini et al 2015), it is still possible 
(L3) that the current, relatively low levels of fishing are at the maximum acceptable level (C2). 
In consideration of these assessments, the risk of TDGDLF catches of neonate/juvenile dusky 
sharks compromising the population’s sustainability is low. 

Due to the selectivity characteristics of the TDGLDF and measures to prohibit retention of 
dusky sharks with interdorsal length of over 70cm (approximately 1.8m TL), juvenile/sub-adult 
and adult fishing mortality in the TDGDLF is low. Incidental entanglement of larger sharks in 
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demersal gillnets is presumed to be proportional to effort in the fishery and so is expected to 
have decreased over the last 20+ years, due to substantial effort reductions in the fisheries. 
Despite the overall reduction in WCDGDLF units from the VFAS, closure of Perth 
metropolitan waters in November 2007, concentrated fishing effort northward where there is a 
greater overlap with the distribution of larger sharks. However, given the lower overall level of 
effort expended in the WCDGDLF since these changes, the effects of any changes in size 
composition are thought to be minimal. The movements of acoustically-tagged sub-adult dusky 
sharks also confirms that these age classes spend little time within TDGDLF fishing grounds. 
The larger dusky sharks that were detected on the Perth or Southern Lines arrays, typically 
remained outside the 100m isobath (Figure 48, Figure 49), where TDGDLF fishing effort is 
relatively low, further reducing their likelihood of capture by the fishery. Based on available 
evidence, it was therefore considered unlikely (L2) that TDGDLF catches of juveniles/sub-
adults are occurring at unacceptable levels (C3), so the risk to stock sustainability is low. 

It was also considered unlikely (L2) that the TDGDLF could have a minor (C1) impact on 
adult dusky sharks, with all other consequences considered a remote probability (L1). Thus, 
the risk to adult sharks by the TDGDLF is also low under current management arrangements.  

4.4.2.1.2 Recreational fishing  

Issue C L Score Risk Rating 

Impact of recreational neonate/juvenile catches 1 2 2 NEGLIGIBLE 

Impact of recreational juvenile/sub-adult catches 1 1 1 NEGLIGIBLE 

Impact of recreational adult catches 1 1 1 NEGLIGIBLE 

Justification: The quantity of recreationally-caught dusky sharks in WA is minor compared to the 
commercial catch (Figure 23). Although the size composition of recreational catches is unknown, 
it has historically been assumed to be similar to the commercial fishery, comprising mainly 
neonates/juveniles with an average weight of 5kg (DoF 2008). There are anecdotal reports of land-
based targeting of larger whaler sharks in WA, although it is unclear whether these are dusky 
sharks or sympatric species, especially bronze whaler sharks. Acoustic tagging data collected 
during the course of the current and associated studies, suggest that bronze whaler sharks are more 
common in nearshore waters around the lower West and South coasts of WA (Appendix 4: Spatial 
detection patterns for bronze whaler sharks.) than dusky sharks. Although dusky sharks may be a 
minor component of land-based recreational catches of large whaler sharks, until accurate records 
and species identification of these catches are available, these catches are assumed to comprise 
equal quantities of bronze whaler and dusky sharks. Although beach-caught whaler sharks are 
generally reported to be released alive and a maximum size limit of 70cm IDL prevents 
recreational fishers from legally retaining any large individuals, their eventual fate is uncertain. 
Irrespective of uncertainty about post-release mortality, the likelihood of recreational catches of 
juvenile/sub-adult or adult dusky sharks having any impact on stock sustainability (C1) is 
considered remote (L1), and it is considered unlikely (L2) that the level of recreational fishing of 
younger age classes would have a measurable impact on the stock (C1). Recreational fishing was 
therefore assessed as posing a negligible risk to all age groups of dusky sharks. 
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Table 24.  Overview of risk scores and risk ratings for issues relating to the ecological sustainability of Western Australia’s dusky shark resource  

Component Sub-component Issue Group Issue 
Likelihood of 
Consequence Risk 

score 
Risk 

rating 
1 2 3 4 5 

Dusky shark  Neonate/juvenile 

(0 – 5 yrs) 

Impact of extractive 
fishing in WA 

Temperate Demersal Gillnet & Demersal Longline Fishery 5 3 2 1 1 6 Low 

Recreational fishing 2 1 1 1 1 1 Negligible 

Northern Shark Fishery 1 0 0 0 0 1 Negligible 

Other WA fisheries  1 0 0 0 0 1 Negligible 

Cumulative WA fisheries 5 3 2 1 1 6 Low 

Impact of external 
influences 

Non-WA extractive fisheries 1 0 0 0 0 1 Negligible 

Coastal and offshore development 1 0 0 0 0 1 Negligible 

Environmental influences 1 0 0 0 0 1 Negligible 

Juvenile/sub-adult 

(5 – 25 yrs) 

Impact of extractive 
fishing in WA 

Temperate Demersal Gillnet & Demersal Longline Fishery 3 2 2 1 1 6 Low 

Recreational fishing 1 0 0 0 0 1 Negligible 

Northern Shark Fishery 1 0 0 0 0 1 Negligible 

Other WA fisheries  1 0 0 0 0 1 Negligible 

Cumulative WA fisheries 3 2 2 1 1 6 Low 

Impact of external 
influences 

Non-WA extractive fisheries 4 3 2 1 1 6 Low 

Coastal and offshore development 1 0 0 0 0 1 Negligible 

Environmental influences 1 0 0 0 0 1 Negligible 
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Adults 

(> 25 yrs) 

Impact of extractive 
fishing in WA 

Temperate Demersal Gillnet & Demersal Longline Fishery 2 1 1 1 1 5 Low 

Recreational fishing 1 0 0 0 0 1 Negligible 

Northern Shark Fishery (current conditions) 1 0 0 0 0 1 Negligible 

Northern Shark Fishery (resumption of fishing) 3 3 3 2 1 9 Medium 

Other WA fisheries  1 0 0 0 0 1 Negligible 

Cumulative WA fisheries (current conditions) 1 0 0 0 0 1 Negligible 

Cumulative WA fisheries (resumption of NSF) 3 3 3 2 1 9 Medium 

Impact of external 
influences 

Non-WA extractive fisheries 5 4 3 2 2 10 Medium 

Coastal and offshore development 2 2 1 1 1 4 Low 

Environmental influences 1 0 0 0 0 1 Negligible 
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4.4.2.1.3 Northern Shark Fisheries 

Issue C L Score Risk Rating 

Impact of NSF neonate/juvenile catches 1 1 1 NEGLIGIBLE 

Impact of NSF juvenile/sub-adult catches 1 1 1 NEGLIGIBLE 

Impact of NSF adult catches (current conditions) 1 1 1 NEGLIGIBLE 

Impact of NSF adult catches (resumption of fishing) 3 3 9 MEDIUM 

Justification: The combination of existing fishery-dependent and -independent data, previous 
conventional tagging and new acoustic monitoring data collected during this project provides 
the most accurate and complete picture of the life cycle of dusky sharks off Western 
Australia. As dusky sharks grow they gradually move northward through the West Coast 
Bioregion, before joining sub-adult and adult dusky shark stock components in the Gascoyne 
and Northern Bioregions. However, sub-adults and adults remain highly mobile and 
undertake periodic southward movements, usually (but not always) during warmer months 
(Figure 60 and Figure 61). The frequency of southward movement based on acoustic data 
suggests that, at least for females, these movements are probably linked to natal migrations, 
as has been suspected.  

Since the closure of the western portion of the WANCSF (114⁰-118⁰E and South of 18⁰S ) in 
2005 and the termination of the NSF EPBC Act accreditations as approved Wildlife Trade 
Operations (WTOs) in 2008 and 2009, operators have elected not to fish since early 2009 
(Figure 23, Molony et al. 2013). However, as fishing could theoretically resume in these 
fisheries, they are considered here for completeness.  Notwithstanding the potential for a 
future resumption of the NSF, the closure of the WANCSF off the Pilbara coast to protect 
adult sandbar sharks, along with the previous (1993) prohibition on the commercial use of 
“shark fishing gear” throughout the rest of the Gascoyne Bioregion, has currently eliminated 
targeted shark fishing across most of the known distribution of sub-adult dusky sharks off 
northern WA. As a result, the consequence of zero juvenile/sub-adult dusky shark catches 
(C1) was assessed as being remotely likely (L1) to compromise stock sustainability under 
current management arrangements (i.e. negligible risk). As neonates/juveniles are primarily 
distributed in the south-west of the State and were never caught in appreciable quantities by 
this fishery, the risk associated with catches of these stock components are also negligible 
(C1, L1).  

Although the northern and north-eastern extent of adult dusky sharks’ distribution is not 
clearly defined and the magnitude of previous catches is uncertain due to potential 
misreporting issues, catches would resume if the NSF fishing recommenced with the 
previously-permitted gear types. As protection of whaler sharks with inter-dorsal fin lengths 
>70cm does not apply north of 27⁰S latitude, it is assumed that those catches would result in 
close to 100% mortality. Dusky sharks have an exceptionally low biological productivity 
(Smith et al., 1998; Simpfendorfer, 1999) and recruitment is sensitive to even very low levels 
(0.01-0.02y-1) of adult mortality (McAuley et al. 2007a).  
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On this basis, the catch of adult dusky sharks that occurred during the late 1990s to mid-
2000s, while poorly quantified, was likely (L4) to have been unacceptable (C3) (i.e. 
constituted a high risk to stock sustainability). However, the management changes 
implemented in response to unsustainable exploitation of sandbar sharks indirectly led to a 
complete cessation of fishing by the NSF in early 2009. As a result, there has been no catch of 
adult dusky sharks for nearly eight years and the likelihood of any consequence (C1) resulting 
from adult fishing mortality is, therefore, remote (L1) and the current risk to the stock is 
negligible. Any future resumption of fishing by the NSF (within the five year scope of this 
risk assessment), however, would increase this risk. Noting the sensitivity of the adult stock 
to even low rates of fishing mortality (1-2%), without effective safeguards, it was considered 
possible (L3) that, following a resumption of NSF activity, adult catches could recur at 
unacceptable (C3) levels, in which case the fisheries would pose a medium risk to this stock.   

4.4.2.1.4 Other WA Fisheries 

Issue C L Score Risk Rating 

Impact of other WA fisheries’ neonate/juvenile catches 1 1 1 NEGLIGIBLE 

Impact of other WA fisheries’ juvenile/sub-adult catches 1 1 1 NEGLIGIBLE 

Impact of other WA fisheries’ adult catches 1 1 1 NEGLIGIBLE 

Justification: Dusky sharks were historically caught and retained by other WA fisheries, with 
potentially significant quantities caught by “wetline” hook methods, particularly in the West 
Coast Bioregion (Figure 23). Since 2006, commercial landings of sharks and rays have been 
prohibited in non-target fisheries throughout WA, as has the use of wire traces and large 
hooks, previously used to target large sharks for their fins. Furthermore, the practice of shark-
finning (retaining fins and discarding the rest of the shark) was effectively prohibited in 2006. 
Nevertheless, because of the longevity of this species, the impacts of this previous source of 
mortality may still be suppressing recruitment to the stock and, despite the significant 
penalties for illegally landing shark fins, there is potential for this activity to resume in the 
future. The risks associated with these activities are therefore included here for completeness.  

Catches of sharks, including dusky shark, are known to have occurred in numerous other 
State-managed commercial fisheries prior to their commercial protection in 2006, although 
records of these catches are patchy and generally unspecified (Borg and McAuley, 2004). 
These fisheries included the open access ‘wet-line’ sector (now partially managed as the West 
Coast Demersal Scalefish Interim Managed Fishery), numerous trawl fisheries, the Kimberley 
Gillnet and Barramundi Fishery and the South and West Coast Estuarine Managed Fisheries. 
Despite the 2006 prohibition on retention of shark catches in (most of) these fisheries, 
incidental bycatches are likely to have continued since then, although these have presumably 
been discarded when they occurred. Although neither the quantity nor size composition of 
dusky sharks’ contribution to these poorly documented catches cannot be reliably quantified, 
even small catches of sub-adult and adult dusky sharks have the potential to affect 
recruitment and should, therefore, be considered. However, based on current management 
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arrangements and the remote likelihood (L1) that relatively minor (C1) historical catches (in 
comparison to the target shark fisheries), other fisheries were assessed as posing negligible 
risk to the stock. 

4.4.2.1.5 Cumulative WA Fisheries 

Issue C L Score Risk Rating 

Cumulative impact of neonate/juvenile catches 2 3 6 LOW 

Cumulative impact of juvenile/sub-adult catches 3 2 6 LOW 

Cumulative impact of adult catches (current conditions) 1 1 1 NEGLIGIBLE 

Cumulative impact of adult catches (resumption of NSF) 3 3 9 MEDIUM 

Justification: Current management arrangements have resulted in negligible-low risk ratings 
for the majority of issues, and the cumulative impacts of multiple issues is not expected to 
materially increase the risks to dusky sharks. In keeping with the precautionary principle of 
ESD, therefore, the highest risk for each particular age group was therefore chosen to reflect 
the cumulative risk to dusky sharks.  

4.4.2.2 Impact of external influences 

4.4.2.2.1 Non-WA extractive fisheries 

Issue C L Score Risk Rating 

Impact of non-WA neonate/juvenile catches 1 1 1 NEGLIGIBLE 

Impact of non-WA juvenile/sub-adult catches 2 3 6 LOW 

Impact of non-WA adult catches 5 2 10 MEDIUM 

Justification: Given available catch and conventional tagging data, which suggest that 
neonates/juveniles occur almost exclusively within nearshore waters off the WA coast (Figure 
33 and Figure 34), there was considered to be a remote (L1) likelihood of minimal 
consequences (C1) to the sustainability of the dusky shark stock from non-WA fisheries’ 
catches of these age groups. The risk of neonate/juvenile fishing mortality from non-WA 
fisheries was therefore considered to be negligible.   

Older juvenile and sub-adult dusky sharks are, however, known to be caught by the MSF and 
the Gillnet Hook and Trap (GHAT) sector of the SESSF that operates off the South Australian 
coast. Rogers et al. (2013b) found that in 2007-2010 dusky sharks comprised around 20% of the 
whaler shark catch (previously assumed to be entirely bronze whaler sharks), which has 
averaged ~70 t annually since 1990. Fishery-dependent sampling indicated that the dusky shark 
component of these catches is/was comprised predominantly of juvenile/sub-adults. Satellite 
and acoustic tagging shows that individuals move between SA and WA waters (Rogers et al. 
2013a, 2013b). Although the quantity of South Australian MSF catches is quite small relative to 
the TDGDLF, given the inherent sustainability risks of applying fishing mortality to older dusky 
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sharks than are assessed and managed in the TDGDLF, it is possible (L3) that catches may be at 
the maximum acceptable level (C2). Based on this, the risk of extra-jurisdictional catches of 
juveniles/sub-adults was assessed as low.  

Sub-adult and adult dusky sharks are known and suspected to have been historically caught by 
other fisheries outside of WA’s jurisdiction. In particular, the development of the 
Commonwealth WTBF during the mid-late 1990s (then known as the Southern and Western 
Tuna and Billfish Fishery) is believed to have led to substantial incidental catches of adult 
sharks along the edge of the continental shelf, which at the time were estimated to have 
amounted to 1400 – 2100 individuals in 1999 (Rose and McLoughlin 2001; Borg and McAuley 
2004). Acoustic telemetry data from the current study support previous assumptions that outer 
continental shelf and (presumably) proximal oceanic waters are commonly utilised by adult and 
larger sub-adult dusky sharks during migrations along the West coast of Australia. A code of 
conduct was developed for the WTBF in 2003 to reduce the potential impacts of this fishery on 
shark stocks, which included shark bycatch trip limits and a handling protocol (AFMA 2008). 
However, by then, the fishery had moved further offshore into oceanic waters where dusky 
shark bycatch was likely to be negligible. In recent years fishing activity in the WTBF has been 
extremely low. However, as it is uncertain if and how the fishery might redevelop in the future, 
its potential future risk is considered here for completeness.   

In addition to catches by domestic fisheries, adult dusky sharks are potentially vulnerable to 
capture by foreign fishing vessels, both legally in international jurisdictions and within the 
MOU box off the Kimberley coast, as well as illegally within the Australian Exclusive 
Economic Zone (EEZ). As part of a bilateral Memorandum of Understanding (MOU) 
between Indonesia and Australia, traditional Indonesian fishers are allowed to capture sharks, 
including dusky sharks, using traditional methods in an area of Australia’s Northwest Shelf 
(Stacey 2001). Illegal fishing for sharks has also occurred (and may be continuing) throughout 
Australia’s northern waters (Field et al. 2009). However, the magnitude of Illegal, 
Unregulated and Unreported (IUU) fishing, including by foreign fishing vessels, of dusky 
sharks is not well understood and the risk from this activity is assumed to fluctuate through 
time in response to social, economic, and political factors. Indonesia has the highest global 
production of sharks and rays and although much of this catch is likely to come from waters 
outside of Indonesia’s territorial waters, emerging data suggest that a genetically shared stock 
of dusky sharks exists in Indonesian waters (Junge et al, in review). Thus, the potential 
impacts of adult dusky shark catches outside of the Australian Exclusive Economic Zone 
(EEZ), also need to be considered.  

Although the magnitude and composition of historical, current and potential future levels of 
foreign fishing pressure on adult dusky sharks is uncertain, given the inherent vulnerability of 
this critical stock component, it was considered that, extraneous fishing pressure could 
conceivably lead to permanent or widespread depletion (C5), at least under exceptional 
circumstances (L2). Thus the risk to the dusky shark stock from these sources of fishing is 
thought to be medium.  
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4.4.2.2.2 Coastal and offshore development 

Issue C L Score Risk Rating 

Impact of development on neonates/juveniles 1 1 1 NEGLIGIBLE 

Impact of development on juveniles/sub-adults 1 1 1 NEGLIGIBLE 

Impact of development on adults 2 2 4 LOW 

Justification: Coastal development and associated human population growth in the southwest 
region could indirectly lead to impacts on neonate/juvenile and juvenile/sub-adult dusky 
sharks through increased commercial and recreational fishing pressure and impacts of habitat 
degradation on prey species with flow-on trophic cascade effects to dusky sharks. Since this 
species does not use discrete inshore nursery areas, impacts of habitat degradation do not 
directly pose a significant risk. Therefore, especially within the timeframe of this risk 
assessment, the likelihood of any impact (C1) from development impacts to neonate/juvenile 
age classes appears remote (L1) and risk to these age groups were considered to be low. 
Development of WA’s offshore petroleum and natural gas resources on the Northwest Shelf, 
however, overlaps with the core area of adult distribution of dusky sharks. However, it is 
considered unlikely (L2) these activities could be having any more than a moderate impact 
(C2). Therefore, the risk from coastal and offshore development was considered to be low.  

4.4.2.2.3 Environmental influences 

Issue C L Score Risk Rating 

Environmental influences on neonates/juveniles 1 1 1 NEGLIGIBLE 

Environmental influences on juveniles/sub-adults 1 1 1 NEGLIGIBLE 

Environmental influences on adults 1 1 1 NEGLIGIBLE 

Justification: Given their widespread distribution, mobility, wide temperature-range 
tolerance, apparent lack of habitat-specificity and relatively broad diets (Simpfendorfer et al., 
2001), it was assumed that dusky sharks have an inherently low vulnerability to 
environmental influences (Chin et al., 2010). At least anecdotally, the range over which dusky 
sharks give birth appears, however, to shift in relation to the strength of the Leeuwin current. 
A risk assessment for chondrichthyans in the Great Barrier Reef Marine Park also found 
dusky sharks to have low vulnerability to the effects of climate change (Chin et al. 2010). 
Given the apparently high adaptive capacity of dusky sharks, any consequence (C1) is 
considered remote (L1) and the risk from environmental influences was therefore assessed to 
be negligible.  
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4.4.3 Sandbar shark 

4.4.3.1 Impact of extracting fishing in WA 

4.4.3.1.1 Temperate Demersal Gillnet & Demersal Longline Fisheries 

Issue C L Score Risk Rating 

Impact of TDGDLF neonate/juvenile catches 1 1 1 NEGLIGIBLE 

Impact of TDGDLF juvenile/sub-adult catches 3 2 6 LOW 

Impact of TDGDLF adult catches 1 1 1 NEGLIGIBLE 

Justification: Relatively little is known about the early life history of sandbar sharks as only a 
small number of neonates have been recorded from a wide area of continental shelf waters off 
WA (McAuley et al 2007b). Due to their smaller size at birth relative to dusky sharks, the size 
selectivity of 16.8cm and 17.5cm mesh sizes used in the TDGDLF results in catches primarily 
comprising older juvenile and sub-adult age classes (McAuley et al., 2007a). Birth occurs at 
40–45 cm FL after a 12 month gestation (McAuley et al 2007b). The timing of parturition 
seems to be protracted, peaking during summer and autumn. Neonates have been captured 
throughout WA waters in depths 28 to 119 m suggesting that, unlike other parts of the world, 
coastal embayments are not used as nursery areas by sandbar sharks (McAuley et al 2007b). 
Based on the lack of neonates and younger juveniles in TDGDLF catches, there was assessed 
to be a remote (L1) risk of even minimal consequences (C1) from TDGDLF fishing mortality 
impacts on these age groups. The West Coast Bioregion is the core range of larger 
juveniles/sub-adults and is where targeted fishing by the TDGDLF developed during the mid-
1990s and continues to be focused. Juvenile sandbar sharks begin recruiting to the TDGDLF 
around 60 cm FL. Gillnet selectivity was estimated to peak at 80–100 cm FL (McAuley et al. 
2007b),  with a broader range of age classes (3–12 year olds) being vulnerable to the fishery, 
relative to dusky sharks (McAuley et al 2007a). Catch rates are greatest in depths of 80 to 
120m. Conventional tagging data and TDGDLF catch records suggest that sandbar sharks of 
these sizes remain resident within the West Coast Bioregion year-round and do not undertake 
extensive movements or migrations (Figure 35 and Figure 36, McAuley et al. 2005).  

Targeting of sandbar sharks by the TDGLDF commenced in the mid-1990s and increased 
steadily through the late 1990s and early 2000s (Figure 24) as effort shifted offshore in 
response to declining catch rates of target stocks, particularly dusky sharks. From 2000 to 
2005 catches fluctuated between 158 and 215 t, corresponding to age-specific fishing 
mortality rates of 0.1–0.28 yr-1 (McAuley et al. 2007a).  Demographic analysis indicated 
increasing catches in the early 2000s were likely to be unsustainable, particularly due to the 
high level of concurrent adult fishing mortality in the NSF (see below). Since then there has 
been a major reduction in effort in the West Coast Bioregion, where the majority of 
juvenile/sub-adult catch was taken, with commensurate reductions in catch (45 t in 2013/14). 
This is well-below the management trigger of 120 t that was developed to accommodate a 
low level of ongoing NSF catch in the mid-2000s (McAuley et al., 2005).  



126   Fisheries Research Report [Western Australia] No. 282, 2017 

The time-series of effective sandbar shark CPUE showed a fluctuating trend that is thought to 
reflect fishing behaviour rather than trends in abundance (McAuley et al., 2005). Neither 
length (Figure 27) nor weight (Figure 32) compositions suggest a shift in the catch 
composition towards larger sharks, and fishery-wide fluctuations in the mean weight of 
sandbar sharks, derived from logbook records, are assumed to be due to the natural variability 
in the distribution of multiple co-occurring age-classes and/or artefacts of catch reporting 
behaviour (Figure 32). It is therefore considered unlikely (L2) that fishing will occur at 
unacceptable (C3) levels unless there is a major shift in fishing behaviour, e.g. shifting from 
gillnets to longlines as began to occur in the mid-2000s. The risk of juveniles/sub-adult 
exploitation by the TDGDLFs is therefore low.  

Acoustic tagging data (Figure 55) confirm the inference from fishery-dependent and –
independent catch composition data that West Coast and South Coast Bioregions are not core 
areas of distribution for adult sandbar sharks. Furthermore, the selectivity characteristics of 
16.5 and 17.8cm mesh sizes are not effective at catching these larger-sized sharks. It was 
therefore concluded that there is limited potential for the TDGDLF to catch appreciable 
quantities of adult sandbar sharks and that there is a remote (L1) risk of any consequence (C1) 
occurring (i.e. a negligible risk).  

4.4.3.1.2 Recreational fishing 

Issue C L Score Risk Rating 

Impact of recreational neonate/juvenile catches 1 1 1 NEGLIGIBLE 

Impact of recreational juvenile/sub-adult catches 1 1 1 NEGLIGIBLE 

Impact of recreational adult catches 1 1 1 NEGLIGIBLE 

Justification: Sandbar sharks are not targeted by recreational fishers but are known to be 
caught by anglers around the State (McAuley et al., 2005; Ryan et al., 2013). Even allowing 
for an unknown quantity of unidentified sandbar shark catch, the quantity of recreational 
catches in WA is minor compared to the commercial catch (Figure 24). Additionally, juvenile 
sandbar sharks’ preference for deeper waters is thought to reduce their relative susceptibility 
to capture. Despite this, conventional tags have been recovered from recreational fishers, 
particularly off North-West Cape and in North-West Shelf waters, indicating that some 
recreational catch of sub-adults and adults occurs. However, in the West Coast Bioregion and 
to a lesser extent, in the South Coast Bioregion, sandbar sharks in the named and unspecified 
recreational whaler shark catches are assumed to be mainly juveniles/sub-adults, although 
adults and young juveniles and neonates may also occasionally be caught. For all bioregions 
the annual reported catch of sandbar sharks by recreational fishers is < 1 tonne (Figure 24, 
Ryan et al. 2013), however the species is also likely to account for an additional unknown 
portion of the 3,958 unidentified whaler sharks retained in 2011/12. Based on the relatively 
minor magnitude of these catches, there was considered to be a remote (L1) likelihood of any 
consequence (C1) arising from recreational exploitation of any life stage, so these risks were 
assessed to be low. 
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Table 25.  Overview of risk scores and risk ratings for issues relating to the ecological sustainability of Western Australia’s sandbar shark resource  

Component Sub-component Issue Group Issue 
Consequence Risk 

score 
Risk 

rating 1 2 3 4 5 

Sandbar 
shark  

Neonate/juvenile 

(0 – 6 yrs) 

Impact of extractive 
fishing in WA on 
juveniles 

Temperate Demersal Gillnet & Demersal Longline Fishery 1 0 0 0 0 1 Negligible 

Recreational fishing 1 0 0 0 0 1 Negligible 

Northern Shark Fishery 1 0 0 0 0 1 Negligible 

Other WA fisheries  1 0 0 0 0 1 Negligible 

Cumulative WA fisheries 1 0 0 0 0 1 Negligible 

Impact of external 
influences on 
juveniles 

Non-WA extractive fisheries 1 0 0 0 0 1 Negligible 

Coastal and offshore development 1 0 0 0 0 1 Negligible 

Environmental influences 1 0 0 0 0 1 Negligible 

Juvenile/ 
sub-adults 

(6 – 15 yrs) 

Impact of extractive 
fishing in WA on sub-
adults 

Temperate Demersal Gillnet & Demersal Longline Fishery 3 2 2 1 1 6 Low 

Recreational fishing 1 0 0 0 0 1 Negligible 

Northern Shark Fishery (current conditions) 1 0 0 0 0 1 Negligible 

Northern Shark Fishery (resumption of fishing) 5 4 4 3 3 15 High 

Other WA fisheries  1 0 0 0 0 1 Negligible 

Cumulative WA fisheries (current conditions) 3 2 2 1 1 6 Low 

Cumulative WA fisheries (resumption of NSF) 5 4 4 3 3 15 High 
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Impact of external 
influences on sub-
adults 

Non-WA extractive fisheries 1 0 0 0 0 1 Negligible 

Coastal and offshore development 1 0 0 0 0 1 Negligible 

Environmental influences 1 0 0 0 0 1 Negligible 

Adults 

(> 15 yrs) 

Impact of extractive 
fishing in WA on 
adults 

Temperate Demersal Gillnet & Demersal Longline Fishery 1 0 0 0 0 1 Negligible 

Recreational fishing 1 0 0 0 0 1 Negligible 

Northern Shark Fishery (current conditions) 1 0 0 0 0 1 Negligible 

Northern Shark Fishery (resumption of fishing) 5 4 4 3 3 15 High 

Other WA fisheries  1 0 0 0 0 1 Negligible 

Cumulative WA fisheries (current conditions) 1 0 0 0 0 1 Negligible 

Cumulative WA fisheries (resumption of NSF) 5 4 4 3 3 15 High 

Impact of external 
influences on adults 

Non-WA extractive fisheries 5 4 3 2 2 10 Medium 

Coastal and offshore development 2 2 2 1 1 6 Low 

Environmental influences 1 0 0 0 0 1 Negligible 
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4.4.3.1.3 Northern Shark Fishery 

Issue C L Score Risk Rating 

Impact of NSF neonate/juvenile catches 1 1 1 NEGLIGIBLE 

Impact of NSF juvenile/sub-adult catches (current conditions) 1 0 1 NEGLIGIBLE 

Impact of NSF juvenile/sub-adult catches (resumption of fishing) 5 3 15 HIGH 

Impact of NSF adult catches (current conditions) 1 0 1 NEGLIGIBLE 

Impact of NSF adult catches (resumption of fishing) 5 3 15 HIGH 

Justification: All available evidence indicated that, like dusky sharks, sandbar sharks 
comprise a single biological stock in WA, with juveniles concentrated in the West Coast and 
Gascoyne Bioregions and adult biomass concentrated between the Abrolhos Islands and the 
Kimberley. Conventional tag recaptures demonstrated that, like dusky sharks, juveniles 
gradually migrate up the West Coast as they grow before joining the adult stock in the 
Gascoyne and North Coast Bioregions (McAuley et al., 2005). Based on observations of 
seasonal catches of adult sandbar sharks by the TDGDLF (typically during autumn), it was 
previously hypothesised that adults undertake north-south seasonal migrations, although, 
given the limited and dispersed observations of neonate sandbar sharks, it was unclear 
whether parturition was the main driver of these migrations. However, unlike dusky sharks, 
previous DNA microsatellite analysis, suggested a finer-scale bioregional structuring within 
the sandbar population (McAuley et al. 2005). The acoustic tagging data collected during the 
current study, provide further evidence of functional stock-structuring that require further 
resolution but which may have important implications for future assessment and management 
of this stock. Nonetheless, as neonate and juvenile life stages do not commonly occur in the 
area that the NSF operated, there was considered to be a remote (L1) likelihood of any 
possibility (C1) that these fisheries will impact the stock through catching neonate, juvenile 
and sub-adult sandbar sharks. Thus these risks were assessed as low.   

The predominantly sub-adult and adult sharks tagged within the Gascoyne and North Coast 
Bioregions showed a relatively high degree of occupancy in the Ningaloo area (Figure 43), 
which is contrary to a hypothesis of them undertaking regular long-distance southerly 
migrations from the North-West of the State. Although, a small number of sandbar sharks 
from the Ningaloo array were detected in deeper waters off Perth and the South-West of the 
State (Figure 48 and Figure 49), it seems increasingly unlikely that adult sandbar sharks are 
generally as mobile as previously believed. If this Bioregional separation of functional stock 
sub-units is characteristic of sharks in the northern Bioregion, then not only might breeding 
biomass have been more heavily impacted than previously estimated (McAuley et al. 2005) 
but measures to recover this key stock component may have been more effective than 
expected. However, their low detection rates off Perth and to the South might indicate that the 
majority of sandbar sharks do not regularly travel that far South. 
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Following the introduction of restrictions on the use of shark fishing gear (“shark longlines,”  
“shark droplines” and pelagic gillnets) off the north coast of WA in 1993, catch of sandbar 
sharks was initially low (< 20 t, Figure 24). However, during the late 1990s and early 2000s, a 
rapid escalation in targeting occurred with reported catch peaking at 763 t in 2004/5. 
Conflicting sources of CPUE data also suggested substantial underreporting of catch may 
have occurred (McAuley et al. 2005). Demographic analysis incorporating empirically-
derived fishing mortality rates, indicated that these catches of predominantly sub-adult and 
adult sharks (Figure 28) were increasingly unsustainable (McAuley 2009). These model 
predictions were supported by a concurrent 58% decline in a fishery-independent CPUE 
abundance index between 2002 and 2005.  Demographic modelling further suggested that in 
addition to TDGDLF catches, this stock could sustain as little as 1‒2% fishing mortality of 
adult age classes, which at the time could have been in the order of 20-40t (McAuley et al. 
2007a, DoF, unpublished data).  

Based on current understanding of the inherent vulnerability of sandbar sharks it is almost 
certain (L5) that the intensity of fishing during the early 2000s had a major (C4) impact, 
implying that the risk to the stock at that time was Severe. As a result of the strong 
management intervention commensurate with this level of risk, catch was greatly reduced 
after 2005 and there has been zero catch of sandbar sharks in the NSF since 2009. It is 
important to point out that the current risk to the stock is and has been negligible since 2009 
(C1, L1) and will likely remain low if catch of sub-adults and adults by the NSF stays below 
the suggested sustainable levels for the target fisheries (i.e. TDGDLF and NSF; McAuley 
2006). However, resumption of fishing by even a small number of vessels could rapidly 
reverse any recovery that may have occurred since fishing ceased. Based on prior experience, 
there is clear evidence to suggest that widespread and long-term depletion (C5) is possible 
(L3) within five years. As such the risk to the sandbar shark stock from a resumption of NSF 
activities is considered high.  

4.4.3.1.4 Other WA Fisheries 

Issue C L Score Risk Rating 

Impact of other WA fisheries’ neonate/juvenile catches 1 1 1 NEGLIGIBLE 

Impact of other WA fisheries’ juvenile/sub-adult catches 1 1 1 NEGLIGIBLE 

Impact of other WA fisheries’ adult catches 1 1 1 NEGLIGIBLE 

Justification: The Pilbara Fish Trawl Fishery (PFTF) historically retained 20 to 30 tonnes of 
predominantly adult female sandbar sharks during the early 2000s (Figure 29, McAuley et al. 
2005). A range of other prawn trawl fisheries operating in the North Coast Bioregion also 
have the potential to interact with adult sandbar sharks. Together with strong anti-finning 
penalties and state-wide commercial protection of all sharks in 2006, the introduction of 
bycatch reduction devices in WA trawl fisheries is understood to have reduced the mortality 
of sandbar sharks posed by these fisheries to very low levels. Although sandbar sharks are 
distributed widely throughout the West Coast, Gascoyne and North Coast Bioregions, they 



 

Fisheries Research Report [Western Australia] No. 282, 2017   131 

are generally distributed outside the range of most other WA-managed commercial fishing 
methods that they are vulnerable to. Based on these current management arrangements, the 
likelihood of any consequence (C1) occurring due to other fisheries’ catches of sandbar 
sharks at any life stage was considered remote (L1) and the associated risk to the stock as 
low. 

4.4.3.1.5 Cumulative WA Fisheries 

Issue C L Score Risk Rating 

Cumulative impact of neonate/juvenile catches 1 1 1 NEGLIGIBLE 

Cumulative impact of juvenile/sub-adult catches (current conditions) 3 2 6 LOW 

Cumulative impact of juvenile/sub-adult catches (resumption of NSF) 5 3 15 HIGH 

Cumulative impact of adult catches (current conditions) 1 1 1 NEGLIGIBLE 

Cumulative impact of adult catches (resumption of NSF) 5 3 15 HIGH 

Justification:  For neonates/juveniles the cumulative likelihood of any consequence (C1) was 
assessed as remote (L1). Thus, based on the current management arrangements and 
precautionary principal of ESD, the cumulative risk to sandbar sharks was chosen to reflect 
that of the TDGDLF for juveniles/sub-adults and the NSF for adults.  

4.4.3.2 Impact of external influences 

4.4.3.2.1 Non-WA extractive fisheries 

Issue C L Score Risk Rating 

Impact of non-WA neonate/juvenile catches 1 1 1 NEGLIGIBLE 

Impact of non-WA juvenile/sub-adult catches 1 1 1 NEGLIGIBLE 

Impact of non-WA adult catches 5 2 10 MEDIUM 

Justification: Because of the size selectivity of target fishing gear, little is known about the 
distribution of neonates/juvenile sandbar sharks, however they are assumed to occur primarily 
within continental shelf waters of WA, South of 26⁰ 30’. Thus it was concluded that the 
likelihood of any consequence (C1) arising from external fishing mortality of these age 
groups is remote (L1). Likewise, as the core distribution of juvenile/sub-adult sandbar sharks 
appears to be within WA waters, the likelihood of any consequence (C1) is also remote (L1). 
Thus the sustainability risk of non-WA fisheries’ catches of neonates/juvenile and 
juvenile/sub-adult sandbar sharks is negligible.  

Like dusky sharks, adult sandbar sharks have historically been caught and retained in other 
fisheries outside of WA’s jurisdiction. In particular, sandbar sharks are known to have been 
caught during the development of the Commonwealth WTBF during the mid-late 1990s 
(Borg and McAuley 2004). During the 2000s, a range of management measures were 
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introduced to reduce the impacts of shark bycatch in this pelagic longline fishery, including 
trip limits and gear restrictions (AFMA 2008). In recent years fishing activity in the WTBF 
has been low; however, there remains uncertainty about the extent to which adult sandbar 
sharks could be impacted in the future.  

In addition to capture by domestic fisheries, for the reasons given for dusky sharks above, 
adult sandbar sharks are known to be vulnerable to capture by foreign vessels, fishing both 
legally (in the MOU box, where tagged sandbar recaptures have been reported) and illegally 
in Australian and neighbouring waters. However, given sandbar sharks’ more northerly 
distribution, higher fin values, and smaller size, adult sandbar sharks may be at relatively 
higher risk of Foreign Fishing mortality than dusky sharks. Despite the high level of 
uncertainty about current and potential fishing of adult sandbar sharks by non-WA fisheries 
and the inherent vulnerability of this stock to adult fishing mortality, it is still considered 
unlikely (L2) that fishing could lead to permanent or widespread depletion (C5) within the 
five year scope of this risk assessment. Thus, the risk arising from adult sandbar shark catches 
by non-WA managed fisheries was considered to be medium.  

4.4.3.2.2 Coastal and offshore development 

Issue C L Score Risk Rating 

Impact of development on neonates/juveniles 1 1 1 NEGLIGIBLE 

Impact of development on juveniles/sub-adults 1 1 1 NEGLIGIBLE 

Impact of development on adults 3 2 6 LOW 

Justification: For the same reasons outlined for dusky sharks, the likelihood of any impact 
(C1) from development to neonate/juvenile and juvenile/sub-adult age groups was judged to 
be remote (L1). In regards to the more northerly-distributed adult stock components, it was 
considered unlikely (L2) that coastal and offshore development could have a high impact on 
stock sustainability within the timeframe of this risk assessment (C3), resulting in a low risk. 

4.4.3.2.3 Environmental influences 

Issue C L Score Risk Rating 

Environmental influences on neonates/juveniles 1 1 1 NEGLIGIBLE 

Environmental influences on juveniles/sub-adults 1 1 1 NEGLIGIBLE 

Environmental influences on adults 1 1 1 NEGLIGIBLE 

Justification: For the same reasons outlined for dusky sharks any consequence resulting from 
environmental influences (C1) was considered remote (L1) and the resulting risks as 
negligible.   
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5. Discussion 

5.1 Acoustic tagging 

This study internally implanted 344 C. obscurus (n=103), C. plumbeus (n=101), F. macki 
(n=40) and M. antarcticus (n=100) with acoustic transmitters and includes data from another 53 
internally-tagged C. brachyurus tagged during the associated Shark Monitoring Network project 
(McAuley et al., 2016). By July 2015, 207 of these individuals had been detected along the 
western Australian coastline. Tagged individuals were monitored for a period of up to 1,453 
days. In general, acoustic tagging studies have typically been done at more limited spatial and 
temporal scales and have been focused on species that exhibit stronger aggregation/residency to 
an area. Recently, however, acoustic receiver networks have started to be used for monitoring 
the broad-scale movements of sharks (Heupel et al. 2015; Espinoza et al. 2016). In this study, 
the four most commercially-important shark species of WA were monitored across multiple 
temporal and spatial scales (from hours to 100s of days and even >1000 days and from 10s to 
1,000s of km). This allowed the construction of a more complete picture of each species’ 
movement behaviours than has been obtained from small-scale acoustic tagging studies. It must 
be noted, however, that the larger species, dusky and sandbar sharks, had a higher detection rate 
(58 and 55%, respectively) than gummy and whiskery sharks (33%) which could be due to a 
combination of the intrinsic movement patterns of these species, the spatial distribution of the 
receiver arrays and those species’ higher rates of recapture by targeted fishing. 

An important aspect of the current study is that most individuals were large juveniles or adults, 
which allows the first detailed understanding of these life history stages’ movement ecology 
around the WA coast. In the case of dusky and sandbar sharks, such detailed data could not have 
been obtained from fishery-dependent methods because adult dusky and sandbar sharks 
predominantly reside in areas closed to commercial fishing, are naturally lower in abundance 
than juveniles, are rarely and unpredictably captured by TDGDLF operators and (in the case of 
dusky sharks) are commercially protected. Thus, obtaining sufficient quantities of conventional 
tag recapture data to describe their movements would have been unrealistic. Further, because 
conventional tagging studies are dependent on recapture information provided by fishers, there 
are multiple sources of potential biases, which may arise from the distribution and behaviour of 
fishing, gear selectivity, reporting behaviour, etc. While the results from this study partially 
confirmed that these stock components undertake seasonal migrations into commercial fishing 
grounds as predicted by Simpfendorfer et al. (1996, 1999) and McAuley et al. (2005, 2007b), 
the current data also revealed features of these stocks’ spatial and temporal dynamics that were 
inconsistent with the previous inferences about them. The information generated in our study 
was also used to incorporate fishery-independent movement data into population dynamics 
models for gummy and whiskery stocks.  

Dusky sharks showed the most extensive displacements throughout WA and were not 
detected within any detection array for extensive periods. Smaller individuals were only 
detected in the south and larger individuals showed north-south and south-north 
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displacements with 15 individuals completing round-trip long-distance north-south 
migrations. Satellite and conventional tagging studies in South Australia (Rogers et al. 
2013a), the Gulf of Mexico (Hoffmayer et al. 2014) and South Africa (Hussey et al. 2009) 
also indicate that dusky sharks  undertake long-distance displacements in other parts of the 
world, in the order of 100s to 1000s of km at maximum speeds (based on minimum linear 
displacement) in the order of 10s to 100 km per day (Hussey et al. 2009; Rogers et al. 2013a; 
Hoffmayer et al. 2014,; present study). Hence, the present and previous studies strongly 
indicate that dusky sharks are a highly mobile species with broad-scale movements. 

Most dusky shark individuals undertaking migratory movements completed one migratory 
event within a year though up to 3.5 migratory events were detected during the monitored 
period. The north-south displacements occurred mostly during the warm months (summer and 
autumn) and the south-north displacements occurred mostly during the cooler months (winter 
and spring). This pattern was clear in larger males. The larger females, however, showed a 
more complex pattern. Some individuals conformed to the ‘North in winter-spring and South 
in summer-autumn’ pattern whereas other individuals were consistently detected North 
during both the warmer and cooler months. Also, the GLM predicted that about half of the 
tagged female population would move south in a given year. These findings would support 
the 2-year reproductive cycle hypothesis (McAuley et al. 2007a). However, it is still unclear if 
all migrating individuals actually reproduce and a potentially longer reproductive cycle 
should not be entirely disregarded. 

Sandbar sharks were exclusively tagged in the north of the state and were mostly detected at the 
Ningaloo array, where both males and females showed three different movement patterns: some 
individuals resided within the Ningaloo array and were detected continually, other individuals 
were detected and then not detected for long periods of time and other individuals were only 
detected for a few days. These patterns may suggest ‘behavioural polymorphism’, where 
seemingly comparable individuals of a population exhibit very different behavioural patterns (Rees 
et al., 2010). Behavioural polymorphism has been reported for some teleost species, where some 
individuals exhibit regular patterns and defined movements while others display irregular and 
nomadic movements (e.g. Grüss 2015) or when only a fraction of the population undertakes 
regular reproductive migrations, while another fraction show fidelity to an area throughout the year 
(e.g. Willis et al. 2003). High levels of behavioural polymorphism have direct implications for the 
effectiveness of spatial management (Grüss 2015). However, at least in part, these results also 
reflect the disparate receiver coverage between Perth and Ningaloo Reef and complete lack of 
receivers off the North Coast of WA. Movements of 12 sandbar sharks (22% of those detected) 
from Ningaloo to Perth and the Southern Lines array (n=2) and from release locations in the 
Kimberley (n=3), North West Shelf (n=4) and Shark Bay (n=3) into the Ningaloo array 
demonstrate that sandbar shark movements extend far beyond the Ningaloo Reef region. It may 
therefore be that migration does occur to the South, but not always as far South as Perth or that the 
Ningaloo region itself is close to the southern extent of adult’s migrations from the North-East. 
Unlike sandbar sharks, dusky sharks were generally detected for very brief periods within the 
arrays so no overall patterns of differences in movement among individuals could be inferred. For 
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gummy and whiskery sharks, which were less mobile, a receiver array with a higher spatial 
resolution would be required to test the ‘behavioural polymorphism’ hypothesis. 

The apparent preference of sandbar sharks for deeper continental shelf and upper slope 
waters, may also account for the non-detection of some sharks. Nevertheless, in addition to 
the two sharks detected off Perth, ten of the 54 detected sandbar sharks did demonstrate 
extraneous movements from the Kimberley (n=3), North West Shelf (n=4) and Shark Bay 
(n=3) into the Ningaloo. Thus it is likely that equivalent movements also occur in the 
opposite directions, which might have underrepresented movements of sharks between the 
Kimberley and Pilbara coasts to the southern Gascoyne and northern West Coast bioregions. 

Natal philopatry is common in shark species, and it has been identified for juvenile sandbar sharks 
in the West Atlantic population, where pups occupy estuaries and embayments (Grubbs et al. 
2005). In WA, adults are thought to migrate south to pup and neonates are most often found south 
of the Houtman Abolhos Islands (McAuley et al. 2005, 2007b). Based on conventional tagging, 
these authors hypothesised that juveniles remain in temperate waters for several years and slowly 
migrate northwards to join the breeding stock while adults migrate south to temperate waters to 
give birth. Several reported recaptures of conventionally-tagged adults and sub-adults partly 
support this hypothesis (McAuley et al. 2005). In North America, sandbar sharks are highly 
migratory (Kohler et al. 1998) with adults annually migrating along the eastern coast from 
overwintering areas as far south as the Gulf of Mexico to summer nurseries as far north as Great 
Bay, New Jersey(Rechisky and Wetherbee 2003) . In our study, however, only two individuals 
(two females larger than L50) were detected in southern WA. These detections were recorded 
between February and April by receivers located in deep water. The lack of detections in arrays 
south of Ningaloo Reef may be an artefact of the limited depth distribution of the receivers (<200 
m), as large sandbar sharks  have been caught to depths of 334m off North West Cape during 
fishery-independent surveys (Department of Fisheries unpublished data). Alternatively, the limited 
number of detections off the southern half of WA may be an indication of more complex 
population structuring than previously thought or the lack of receiver coverage for more than 
1,000km to the south of the Ningaloo array. Therefore, it is unclear to what extent these 
observations are representative of the broad-scale movements of sandbar sharks in WA and few 
inferences on migratory movements can be drawn for this species. 

Gummy and particularly whiskery sharks were less mobile than sandbar and dusky sharks. 
Conventional mark-recapture studies have reported movements from Tasmania to WA 
(Walker 2010) for gummy sharks and between Cape Leeuwin in WA and Spencer Gulf in 
South Australia for whiskery sharks (Department of Fisheries, unpublished). Gummy sharks 
in south-eastern Australia showed average displacements in the order 100‒250 km with a 
maximum displacement of >2,500 km (Brown et al. 2000). Comparably, in this study gummy 
sharks showed average displacements of 238 km with a maximum displacement of >900 km. 
For whiskery sharks, conventional tagging in south-western WA showed that most tagged 
individuals were either detected or recaptured within 50 km of the point of release, even after 
long periods at liberty, although six individuals showed displacements to South Australia, of 
between 940km and 2,035km (Department of Fisheries, unpublished). In our study, average 
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long-distance displacements were larger (> 240 km) but the maximum displacement recorded 
was similar (374 km) to the 384 km (Simpfendorfer et al. 1996). These differences in 
movement behaviour resulted in higher exchange rates among management zones for gummy 
sharks than for whiskery sharks.  

The calculated exchange rates must, however, be interpreted with caution. Recorded 
displacements are a function of receiver location. The location of the receiver lines for the 
Southern array did not align with the West Coast/JASDGDLF Zone 1 boundary and sharks 
were not tagged evenly or randomly within each of the zones (e.g. no individuals were tagged 
in the WC). In addition, individuals released in Zone 2 were tagged near the boundary with 
Zone 1, possibly introducing a positive bias in the calculated exchange rates from Zone 2 to 
Zone 1 and therefore in the probability of staying within Zone 2 for those sharks released 
within this zone. However, integrating the conventional tagging data (generated by previous 
FRDC-funded projects) into the estimation of exchange rates among zones would minimise 
the biasing effects described above. Finally, by integrating the estimation of exchange rates in 
the population dynamics models (base case scenario), the effects of other sources of 
information that reflect population dynamics (abundance, size composition, etc.) would 
balance the potential biasing effects of the acoustic tagging data. 

5.2 Catch and effort standardisation  

We applied best-practices for the standardisation of commercial catch and effort data. First, 
catch and effort data were manipulated following agreed business rules for improving data 
quality. An R script that clearly implements these rules in a logical and easy to follow manner 
was developed (https://github.com/JuanMatiasBraccini/Catch_and_effort_manipulation). 
Next, these data were standardised using GLM models. Finally, missing observations were 
imputed based on explicit criteria, an index was constructed, and its corresponding 
uncertainty was quantified. At present, the derived indices are not considered to be reliable 
representations of abundance. Although catch rate standardisation attempts to remove 
confounding effects of variables not related to abundance, this does not necessarily result in 
CPUE being proportional to abundance. Factors such as targeting behaviour, management 
changes and changes in fishing efficiency may not be fully accounted for as the information 
required for this may not be available (Punt et al. 2000). For the TDGDLF daily logbooks, 
fishing trips (potentially targeted at different species) undertaken within the same year-month-
block had to be grouped into a single record in order to combine these data with the monthly 
returns, which comprise the vast majority of the catch and effort records (1975-76 to 2005-
06). In addition, the implementation of a range of management measures (Borg and McAuley 
2004, DoF 2008, McAuley et al. 2015) and the transition from monthly returns to daily 
logbooks affected the reporting of catch and effort data. Hence, there seems to be a disjunct 
between the standardised catch rate series derived from monthly and daily logbook records. 
As this effect is not related to abundance, it is recommended that the two data series are 
treated separately and two indices are constructed for future assessments. Once these indices 
are available, the population dynamics models developed in this study can be calibrated and 
used to re-assess the status of whiskery and gummy shark stocks.  
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5.3 Population dynamics of whiskery and gummy sharks 

This study developed a range of population dynamics models (from biomass dynamics to 
spatial size-based and age-structured models) to reassess the stocks of whiskery and gummy 
sharks. The base case model was designed to capture the movement patterns quantified using 
the acoustic tagging information in addition to movement information collected as part of 
previous FRDC-funded conventional tagging studies. As pointed out above, the models will 
be calibrated once a reliable index of abundance is available. 

5.4 Risk assessment of dusky and sandbar sharks 

Although the TDGDLF is the only active fishery currently targeting dusky and sandbar sharks 
in WA, eight distinct issues were identified as potential risks to achieving the sustainability 
objectives for these resources. Each issue was further subdivided to evaluate the risk to three 
life stages, resulting in a total of 54 issues being considered in the risk assessment. The large 
number of possible issues highlights the complexities of managing wide-ranging and 
migratory marine species with spatially-segregated life stages. The consequence-likelihood 
risk assessment method used here provided a framework for screening this large number of 
potential issues. In the absence of a population dynamics model, it provided a flexible and 
rapid qualitative method for integrating the outcomes of this research project into scientific 
management advice for these species.  

 

Figure 68.  Risk profile of all individual consequence likelihood scores (5 pairs × 54 issues) for dusky and 
sandbar sharks from the risk assessment (see Table 24 and Table 25). The size of bubbles is 
proportional to number of pairs, and the colour denotes the corresponding risk rating  

A key finding of this assessment was that risk ratings for the vast majority of issues — 46 out 
of 54 — were at or below the acceptable level of ‘Medium’ risk (Figure 68). Furthermore, all 
but 2 of the 34 issues for neonates/juvenile and juvenile/sub-adult life stages were assessed as 
negligible or low risk. The two high risk issues for these age groups both related to a 
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resumption of sub-adult sandbar catches in the NSF (see below). This outcome was due to the 
large number of management changes that have been introduced for all extractive fisheries 
that catch or may catch sandbar and dusky sharks in WA over the past two decades. In the 
main commercial fishery, the TDGDLF, this has included large reductions in target fishing 
effort, spatial closures, seasonal closures, commercial protection, gear restrictions and size-
limits. These measures have reduced landings by non-target fisheries, in most cases to zero 
and limited the potential impacts on critical life history stages of dusky and sandbar stocks. 
Although population dynamics models do not currently exist for these species, all available 
information from the TDGDLF was congruent with acceptable levels of depletion (C1-2) and 
therefore negligible or low risk ratings.  

For both dusky and sandbar sharks the risks were greatest for the adult components of the 
stocks, and two issues were identified as posing an unacceptable risk to adult sandbar sharks. 
Specifically, a resumption of fishing by the NSF was identified as the only source of adult 
mortality that could potentially pose a medium to high risk to any component of these stocks. It 
is important to note that these fisheries have been inactive (zero catch) since 2009 and the 
current risks from this fishery are negligible (Molony et al. 2013). Should catches remain at zero 
or below the 20 t level considered sustainable for sandbar sharks (McAuley, 2006), the risk to 
sub-adult and adult sandbar sharks would remain negligible although, without additional 
safeguards, risks to adult dusky sharks may not be ameliorated to below medium. Based on the 
inherent vulnerability and low biological productivity of these long-lived a low productivity 
sharks, a rapid escalation in fishing activities, as occurred in the early 2000s, could still lead to 
unacceptable risks within 5 years. This is based on prior evidence of rapid escalation in targeting 
of, in particular, adult sandbar sharks by the NSF. In contrast to previous analysis of 
conventional tagging data (McAuley et al., 2005), acoustic tagging of adult sandbar sharks in 
this study found that a proportion of individuals showed high fidelity to the Ningaloo Reef area. 
As telemetry data were not collected from north of Ningaloo, this study was unable to provide 
information about the northern boundary of the stock or potential northward movements. As 
such, there is still the potential for the stock to be impacted should fishing recommence by the 
JANSF in the Kimberley region, even if the WANCSF remains closed.  

While the vast majority of risks to dusky and sandbar sharks by extractive fisheries in WA are 
now negligible-low, non-WA fisheries still pose a medium risk to the sustainability of these 
stocks by virtue of their known or expected catches of adults. These fisheries include a range 
of domestic and legal and illegal foreign fishing fleets, for which, accurate species-specific 
catch records and size composition data are generally lacking. Although some of these 
sources of fishing mortality are currently at low levels (eg. WTBF, illegal fishing in the 
Australian Fishing Zone by foreign vessels), sustainability risks could rapidly escalate if 
activity returns to previous levels in future.  

Direct comparison of these assessments with previous risk assessments is not straightforward 
since the latter were undertaken at the fishery (rather than the stock) level and did not 
distinguish threats to specific life stages. A 2002 ESD risk assessment of the TDGDLF (DoF, 
Unpublished) assessed dusky sharks as high risk, primarily due to unquantified cryptic 
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mortality occurring on adults at the time. As a result of multiple factors (e.g. specific 
management measures in WA and Commonwealth fisheries, economic pressures and 
increased maritime border surveillance), dusky shark catches by both WA and non-WA 
managed fisheries are now believed to be much lower. Therefore, while the reduction in 
assessed risk to currently negligible to low levels over the last 14 years appears justified, it is 
acknowledged that without adequate safeguards, a resumption of targeted fishing of large 
demersal sharks by the NSF could elevate the sustainability risk to dusky sharks to an 
unacceptable level. The medium risk assessed here also acknowledges that the NSF could 
have a greater impact on dusky sharks than was assessed in 2002 as data collected since then 
indicates that the stock has a more northerly distribution than was previously considered.  

The 2002 risk assessments of sandbar sharks in the TDGDLF and NSF (DoF Unpublished) 
rated the risks to the sustainability of this stock as medium (‘moderate’). This assessment was 
based on preliminary (2 year) estimates of fishing mortality derived from FRDC project no 
2000/134 and deterministic demographic modelling of published biological parameters, 
which indicated that 2000/01 and 2001/02 catch levels in the TDGDLF and NSF were 
sustainable. However, when demographic analyses were subsequently updated with additional 
years’ fishing mortality rate estimates and empirically-derived biological parameters, these 
preliminary estimates were found to be overly-optimistic. Before the partial-closure of the 
NSF and loss of export approvals, reported catches ultimately peaked at 763 t, nearly 40 times 
the level estimated to have been sustainable (in addition to TDGDLF catches of 120t).  

The current catch of sandbar sharks in the NSF has been zero since 2009/10 (inclusive) and 
catches in the TDGDLF have declined to less than 50t per annum for the last three years for 
which data are available. Should catches of sub-adults and adults by the NSF remain zero (or 
close to zero) and catches of the TDGDLF remain below 120t, future risks to the sustainability 
of this stock are likely to remain negligible-low. However, the current assessment recognises the 
potential for rapid escalation of risks to sandbar sharks to unacceptable (high) levels within five 
years from a resumption of previous levels of fishing in the NSF.  

Conclusion 

This project successfully tagged and monitored a large number of commercially-fished shark 
species, around a large extent of the WA coastline. Acoustic telemetry from these sharks 
revealed a variety of movement dynamics at different temporal and spatial scales. 
Significantly, because data were collected from regions and depths of the TDGDLF that are 
largely unfished or closed to fishing and from age classes that are not subject to targeted 
fishing in WA,  it is unlikely that these insights into stocks’ temporal and spatial dynamics 
could have been obtained from conventional tagging studies. As such, the movement 
parameters derived from acoustic tag detections provide unique fishery-independent inputs to 
the new gummy and whiskery shark population dynamics models, re-assessments of 
contemporary risks to the recovery of dusky and sandbar sharks and to future assessments of 
these commercially-important stocks. 
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Acoustic telemetry results provided evidence to largely confirm previous hypotheses about 
the movements of sub-adult and adult dusky sharks, with both males and females 
demonstrating clear migratory displacements between northern and southern WA. While most 
individual dusky sharks remained in the northern extent of the study area during winter and 
spring before moving to southern receiver arrays in summer‒autumn, not all large females 
undertook such movements each year. This observation is also consistent with previous 
assumptions of a non-annual parturition cycle in this species (Simpfendorfer, 1999; McAuley 
et al., 2007a) however it could not be determined whether these patterns were more likely to 
represent a 2- or 3-year reproductive cycle. Description of these movement patterns has 
effectively ‘closed the loop’ in terms of explaining the ontogenetic-segregation of this stock 
in WA waters. As previously reported, dusky sharks are born around the South-West of the 
State before gradually migrating northwards along the West coast (Simpfendorfer et al., 1996; 
1999) to join the breeding stock as sub-adults or adults. The observation of regular southerly 
migrations of both males and females, provides the first direct evidence of the mechanism by 
which parturition occurs more than 1000km to the south of what is considered to be the core 
distribution of adult dusky sharks in the North-West of WA.      

There was no strong supporting evidence for similar assumptions about adult sandbar sharks’ 
migration into temperate waters to give birth as suggested by McAuley et al. (2005).  A small 
proportion of sandbar sharks (n=6) showed high levels of regional fidelity within the 
Ningaloo array but most were only detected intermittently.  Despite extended periods of non-
detection, only 2 sandbar sharks were detected away from Ningaloo, one in the metropolitan 
OTN array and another in the Cape Leeuwin array.  The large distance between the Ningaloo 
receivers and first acoustic array south of this location (Perth) almost certainly affected the 
number detections elsewhere.   

Together with existing FRDC-funded conventional tag-recapture data, new acoustic telemetry 
data were used to inform qualitative consequence–likelihood assessments of the remaining 
sustainability risks facing dusky and sandbar sharks. Risk ratings for the majority of issues 
were at acceptable levels, including for the main target fishery, the TDGDLF, and most other 
WA fisheries. These results reflect the outcomes of the evidence-based management changes 
that have been introduced over the last 20 years in the fisheries that continue to regulate the 
exploitation of these stocks.  

The only potential high risk identified was if excessive fishing mortality of adult sandbar 
shark occurred from a potential resumption of fishing in the NSF.  This situation would also 
pose a medium risk to dusky sharks. Under current practices, in which all shark fishing only 
occurs in the south and west coast bioregions, the risks to both species are negligible-low. 
Should fishing recommence in the north coast region, alternative management arrangements 
would need to be developed to minimise catch of these two species’ breeding stocks to avoid 
impacting recruitment of juveniles to the TDGDLF and the consequential sustainability and 
economic risks to those fisheries.  

Gummy and particularly whiskery sharks showed relatively less movement than dusky and 
sandbar sharks, although individuals were still capable of relatively large-scale displacements. 
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The quantitative data about their movements between TDGDLF management zones, 
however, provides a valuable basis for including and assessing these stocks’ spatial and 
temporal characteristics in a variety of population dynamics models that were developed 
through this project.  Once the issues with developing relative abundance indices for these 
stocks can be resolved, these models will be used to re-assess their status  and the potential 
implications of differential implementation of management measures in the fisheries over the 
last 25 years.  Further work is still required to understand how changes in management and 
reporting behaviour have affected the catch rates reported by the fisheries over the history of 
these fisheries.  Work to generate a time series of standardised CPUE data that more-
accurately reflect trends in these stocks’ abundance is therefore still ongoing. 

This study has demonstrated how acoustic telemetry can be used to determine the movement 
patterns of species at the scale of fisheries management. This information has already been used to 
inform updated assessments of the status and future risk profiles of these important shark species. 

Implications  

This study took advantage of a unique opportunity provided by national and international 
collaborations to concurrently install more than 300 passive acoustic receivers around the 
WA coast between North-West Cape and the Recherche Archipelago. As the majority of 
these receivers have now been removed (though the Perth OTN line and the AATAMS 
Ningaloo array are still operating), it may be unlikely to collect a similar set of large-scale 
movement data for these stocks again. Thus, the telemetry data collected through this project 
are likely to remain the best available source of information on dusky, sandbar, gummy and 
whiskery shark movements for many years to come.  

Although problems with standardising CPUE data across monthly and daily reporting periods 
could not be overcome before preparation of this report, the models that have been developed 
will be used to provide new gummy and whiskery shark stock assessment advice for 
management of the TDGDLF. By incorporating stock movement information, these models 
will be of particular benefit in assessing how these stocks  may be impacted by the potential 
introduction of additional spatial management arrangements designed to exclude demersal 
gillnet fishing effort around colonies of Australian Sea Lions. As the displacement of fishing 
effort resulting from these exclusion areas will result in changes to spatial and temporal 
patterns of fishing behaviour, industry and fishery managers will require more spatially-
explicit assessment advice that can be facilitated through these models. 

Confirmation of adult dusky shark movement patterns has enabled a more refined assessment of 
Resource sustainability risks to this stock. While previous FRDC-funded research quantified the 
risks of fishing mortality on sub-adult and adult stock components, quantifying the cryptic 
sources of fishing of those age classes was regarded as unfeasible. Thus, management measures 
were introduced in the early-mid 2000s to mitigate these known sustainability risks. The 
movements of adult dusky sharks recorded in this project, assisted in qualitatively re-assessing 
the risks associated with sub-adult and adult sharks’ movements through fisheries they are 
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known to be susceptible to capture in. Results of this assessment suggested that the measures 
introduced to mitigate the risks associated with adult fishing mortality are likely to have been 
successful. These conclusions should provide industry and fishery managers with confidence 
that existing management arrangements are providing adequate protection for the breeding 
stock, allowing it to recover from any previous level of depletion. Similarly, the data collected 
on movements of adult sandbar sharks was less conclusive but still suggested that existing 
spatial management, especially the prohibition of commercial shark fishing off the Gascoyne 
and Pilbara coasts, has dramatically reduced the sustainability risks to this stock.  

Risk assessments did, however, emphasise that resumption of fishing in the NSF would pose 
medium to high risks to dusky and sandbar shark stocks, respectively, if they resumed in a 
similar manner to the mid-2000s. As the potential to reactivate these fisheries is currently 
under consideration, these results dictate that methods for mitigating these risks need to be 
developed before fishing resumes. Although this study was not designed to describe these 
stocks’ spatial overlap with the NSF, the internal implantation of acoustic transmitters (‘tags’) 
with expected battery lives of up to ten years during this project, does provide an option for 
further studies into their distribution and movements in NSF fishing grounds.  

Recommendations 

Recommendations for further steps that may be taken to develop the results and outcomes 
from this project include: 

 Development of standardised CPUE indices that take into account the nature of 
commercial catch and effort data reporting and spatio-temporal resolution and use 
these to calibrate the population dynamics models developed in the present study  

 Develop reference points that align with different life history traits of the species (e.g. 
Braccini et al. 2015) and with DoF guidelines for developing harvest strategies (DoF 
2015). Clear species-specific reference points are essential for accurate stock 
assessments. 

 More generally, develop a harvest strategy for the TDGDLF where decision rules that 
determine appropriate harvest levels are clearly defined for meeting the fisheries’ 
objectives. 

 Consideration should be given to the potential of medium to high Resource 
sustainability risks to dusky and sandbar sharks in determining future arrangements 
for the NSF if these fisheries recommence.  

 Consideration should be given to utilising internally-tagged sharks from the present 
project in further studying the spatial overlap of these species with NSF fishing grounds.  

Further development  

A key area that needs further development is the constructing of abundance indicators, 
particularly for whiskery and gummy sharks as this is required in their stock assessments.  
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A reliable index of abundance needs to be constructed in order to calibrate the population 
dynamics models developed and inform management. For this, the monthly return and daily 
logbook data must be treated separately. This will allow analyses at a higher resolution level 
for the daily logbook data. For example, targeting behaviour can be explored at the level of 
shot or trip, rather than at a monthly-aggregated level. 

Once these indices are developed, all available information should be used in the species’ 
assessments. The base case model (3.3.7.3 Base case model and models S7‒S11) provides the 
platform for integrating additional information (conventional and acoustic tagging data, catch 
size composition, age and length data). The incorporation of these data could aid parameter 
estimation and also better account for structural uncertainty. The base case model provides a 
further improvement to the current model used for assessing these stocks by incorporating 
CPUE uncertainty in the models’ objective function. An alternative to dealing with 
unrepresentative abundance indices could be to exclude/down weight this data series. 
Specifically for dealing with the observed spike in gummy shark catches and catch rates in the 
late 2000s, the effect of effort saturation/gear competition (e.g. Punt et al. 1999; Tuck 2011) 
could be incorporated. 

These observations highlight the importance of further exploring options for constructing the 
most reliable abundance index for whiskery and gummy sharks and for using all available 
information, not just commercial catch and effort, for assessing these stocks. 

Finally, species-specific biological reference points are needed to assess model estimates of current 
biomass and exploitation levels. Currently, assessment of stock status is based on a single target 
biomass reference point (40% unfished biomass) applied to all species. However, Braccini et al. 
(2015) showed that different life histories result in different reference points for whiskery, gummy, 
dusky and sandbar sharks. In addition, limit (an unacceptable boundary which, if breached, triggers 
immediate significant management actions) and threshold (an intermediate level between targets 
and limits used as an ‘early warnings’ so an appropriate management response is generated before 
limit levels are breached) reference points must be defined as part of the requirements for 
development a harvest strategy for the TDGDLF (DoF 2015). 

Extension and Adoption 

Some of the earlier results were presented at the TDGDLF Annual Management Meeting in 
September 2013, and in several international conferences (2012 ASFB Annual Conference, 
Adelaide, VIII Jornadas Nacionales de Ciencias del Mar, Comodoro Rivadavia, Argentina, 
2012, and Sharks International, Durban, South Africa, 2014). The data chapters and 
population dynamics modelling chapter will be written up as scientific papers. The draft final 
report was presented to industry, managers and other stakeholders at the TDGDLF Annual 
Management Meeting in October 2016. 

Project coverage 

None relating to the outputs of this project. 
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Project materials developed 

 

Example of the posters distributed among fishers 
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Example of the fridge magnets distributed among fishers 
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Journal paper published – Displaying uncertainty in the biological 
reference points of sharks 
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Journal paper published – Incorporating movement in the 
modelling of shark and ray population dynamics: approaches and 
management implications 
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dynamics of commercially-fished Western Australian sharks. Sharks International, Durban, 
South Africa. 
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Appendices 

Appendix 1: Intellectual property. 

No intellectual property has arisen from the research that is likely to lead to significant 
commercial benefits, patents or licences. 

Appendix 2: Staff. 

The following DoF staff were engaged on the project: 

Matias Braccini: fieldwork, data management, analysis and reporting (85%, 4 y). 

Rory McAuley: Principal Investigator, development and management of tagging, acoustic 
receiver installation, collection and maintenance, staff and data systems (50%, 4 y). 

Alastair Harry: data analysis and reporting (5%, 2 y). 

Silas Mountford, Ian Keay, DoF (25%, 4y). 

Mark Davidson (15%, 2y). 

Nick Jarvis (10%, 2y). 

Skipper and crews of the Research Vessel ‘Naturaliste’ and Patrol Vessels, ‘Hamelin’, 
‘Houtman’ and ‘Walcott’: equipment data collection (5%, 3 y).   

Adrian Thomson, Peter Stephenson, Norm Hall, Alex Hesp, Ross Marriot, Ainslie Denham, 
Simon de Lestang, DoF, provide statistical support (2.5%, 3 y).   
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Appendix 4: Spatial detection patterns for bronze whaler sharks. 

 

Figure 69. Spatial detection patterns of bronze whaler sharks in the Perth arrays 
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Figure 70. Spatial detection patterns of bronze whaler sharks in the VR4G receivers 

 

Figure 71. Spatial detection patterns of bronze whaler sharks in south-western Western Australia 
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