
Development of  
octopus aquaculture 

 Rearing, handling and systems design for 
Octopus tetricus commercial aquaculture

FRDC Project No 2009/206
S. Kolkovski, R. Cammilleri, J. King, C. Cammilleri,  

N. Watts, M. Natale, A. Mori

Fisheries Research Report No. 263, 2015

Fisheries Research Division 
Western Australian Fisheries and Marine Research Laboratories 
PO Box 20 NORTH BEACH, Western Australia 6920

635/15



ii Fisheries Research Report [Western Australia] No. 263, 2015

Correct citation:

Kolkovski, S., King, J., Watts, N., Natale, M.,Mori, A., Cammilleri, R., Cammilleri, C. Development of octopus 
aquaculture Rearing, handling and systems designs for Octopus tetricus commercial aquaculture. FRDC Project No. 
2009/206. Fisheries Research Report No. 263. Department of Fisheries, Western Australia. 52pp.

Researcher Contact Details
Name:  Sagiv Kolkovski
Address:  39 Northside Drive, Hillarys 6029 WA
Phone:  08 9203 0220, 0417 940 498
Fax:  08 9203 0199
Email:  skolkovski@fish.wa.gov.au

FRDC Contact Details
Address:  25 Geils Court, Deakin ACT 2600
Phone:  02 6285 0400
Fax:  02 6285 0499
Email:  frdc@frdc.com.au
Web:  www.frdc.com.au

In submitting this report, the researcher has agreed to FRDC publishing this material in its edited form.

Ownership of Intellectual property rights

Unless otherwise noted, copyright (and any other intellectual property rights, if any) in this publication is owned by 
the Fisheries Research and Development Corporation, Department of Fisheries Western Australia.

This publication (and any information sourced from it) should be attributed to [Kolkovski, S., Department of 
Fisheries, Western Australia, 2015, Development of octopus aquaculture, Perth, Western Australia, February.]

Creative Commons licence

All material in this publication is licensed under a Creative Commons Attribution 3.0 Australia 
Licence, save for content supplied by third parties, logos and the Commonwealth Coat of Arms. 

Creative Commons Attribution 3.0 Australia Licence is a standard form licence agreement 
that allows you to copy, distribute, transmit and adapt this publication provided you attribute the work. A summary of 
the licence terms is available from creativecommons.org/licenses/by/3.0/au/deed.en. The full licence terms are 
available from creativecommons.org/licenses/by/3.0/au/legalcode.

Inquiries regarding the licence and any use of this document should be sent to: frdc@frdc.com.au

©  Fisheries Research and Development Corporation  
and Department of Fisheries Western Australia. July 2015. All rights reserved. 
ISSN: 1035 - 4549 ISBN: 978-1-921845-89-5

Disclaimer

The authors do not warrant that the information in this document is free from errors or omissions. The authors do 
not accept any form of liability, be it contractual, tortious, or otherwise, for the contents of this document or for any 
consequences arising from its use or any reliance placed upon it. The information, opinions and advice contained 
in this document may not relate, or be relevant, to a reader’s particular circumstances. Opinions expressed by the 
authors are the individual opinions expressed by those persons and are not necessarily those of the publisher, 
research provider or the FRDC.  

The Fisheries Research and Development Corporation plans, invests in and manages fisheries research and 
development throughout Australia. It is a statutory authority within the portfolio of the federal Minister for Agriculture, 
Fisheries and Forestry, jointly funded by the Australian Government and the fishing industry.



Fisheries Research Report [Western Australia] No. 263, 2015 iii

Contents

Introduction .......................................................................................................................... 1

1.0  Octopus tetricus ranching and grow out ................................................................... 2
1.1 Animal pick-up and transport .................................................................................  2
1.2 Equipment ...............................................................................................................  2
1.3 Holding (pre-stocking) ............................................................................................  5
1.4 Weighing and initial stocking  ................................................................................  7

1.4.1 Initial weight range ......................................................................................  8
1.5 Initial biomass .........................................................................................................  8
1.6 Daily feed and cleaning protocol ............................................................................  11

1.6.1 Tank checks  .................................................................................................  11
1.6.2 Tank cleaning (morning) ..............................................................................  11
1.6.3 Morning feed (am) .......................................................................................  11
1.6.4 Water quality parameters ..............................................................................  13

1.7 New animal arrival .................................................................................................  13
1.7.1 Holding .........................................................................................................  13
1.7.2  Stocking ........................................................................................................  13

1.8 Weighing and grading  ............................................................................................  13
1.8.1.  Procedure ......................................................................................................  15

1.9 Culling for market. .................................................................................................  15
1.10 Grow-out system .....................................................................................................  16

1.10.1 Tank design ...................................................................................................  16

2.0  Octopus tetricus hatchery protocol ............................................................................ 23
2.1 Broodstock  .............................................................................................................  23

2.1.1 Transport & equipment ................................................................................  23
2.1.2 Holding system .............................................................................................  23
2.1.3 Feeding .........................................................................................................  25
2.1.4 Mating  .........................................................................................................  25
2.1.5 Egg laying and incubation. ...........................................................................  25

2.2 Larvae culture system  ............................................................................................  27
2.2.1 Seawater filtration and sterilisation ..............................................................  27
2.2.2 Larvae tank hydrodynamics .........................................................................  28
2.2.3 Larvae system description ............................................................................  29

2.3  Artemia hatching and enrichment system ..............................................................  30
2.4 Artemia grow-out system. ......................................................................................  31

2.4.1 Grow-out tanks  ............................................................................................  31
2.5 Larvae tank components  ........................................................................................  32

2.5.1 Outlet filters ..................................................................................................  32
2.5.2 Standpipe ......................................................................................................  33

2.6 Double tank system  ...............................................................................................  34



iv Fisheries Research Report [Western Australia] No. 263, 2015

2.7  Automated feeding system  ....................................................................................  37
2.8  Lighting  ..................................................................................................................  38
2.9 Daily protocol  ........................................................................................................  39

2.9.1 Stocking and stocking density ......................................................................  39
2.9.2  Hatching Artemia .........................................................................................  39
2.9.3 Post hatching harvest ....................................................................................  40
2.9.4 Harvesting ....................................................................................................  41
2.9.5 Artemia pre–enrichment stocking ................................................................  41

2.10 Artemia enrichment ................................................................................................  42
2.11 Feeding....................................................................................................................  44
2.12 Plankton collection .................................................................................................  45
2.13 Transfers  ................................................................................................................  46
2.14 Photoperiod .............................................................................................................  48
2.15 Water quality ...........................................................................................................  48



Fisheries Research Report [Western Australia] No. 263, 2015 1

Introduction

The following document ‘Development of octopus aquaculture, rearing, handling and systems 
designs for Octopus tetricus commercial aquaculture’ contains protocols developed during the 
FRDC project 2009/206. These protocols encompass the most up-to-date rearing, handling and 
systems designs for Octopus tetricus commercial aquaculture.

These protocols are the result of extensive research and development work carried out over the 
past four years by the Department of Fisheries, Western Australia and summarised in the final 
project report.

The protocols represent the information needed for octopus aquaculture in a practical and 
hands-on description.

The document is divided to two sections:
1. Octopus ranching 
2. Hatchery rearing

During the project period, the ranching of O. tetricus achieved commercial densities believed 
to be the highest reported in the world. Moreover, several system and rearing developments 
enabled the rearing of the octopus without any hides, which is a traditional method used in 
octopus grow out currently around the world.

This significant achievement improved the system efficiency and greatly improved the 
profitability by reducing manpower costs (significantly reducing cleaning and handling time), 
increasing biomass (kg harvest per unit volume), reducing mortality due to cannibalism 
and reducing capital costs (more biomass per volume means less tanks needed). While the 
system and protocols were developed for O. tetricus, it is the belief of the authors that these 
techniques will be suitable for grow-out of other octopus species such as the Mediterranean 
species Octopus vulgaris, which might present future opportunities for commercial octopus 
aquaculture elsewhere.

The hatchery protocols in this report present the current knowledge about O. tetricus broodstock 
and larvae rearing. During the project, different systems, handling and feeding protocols were 
developed to deal with some of the major issues affecting octopus larvae survival. While significant 
knowledge was gained during the project in this area, the protocols are yet to be developed to a 
commercial level. The hatchery protocols should be used as a base for future development.
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1.0  Octopus tetricus ranching and grow out

1.1 Animal pick-up and transport

In most cases, octopus juveniles are caught by commercial fishing boats using commercial 
octopus pots. Transporting the octopus from the fishing harbour to the grow out location might 
take a few hours. To ensure good survival and optimal condition of the octopus arriving to a 
ranching facility, a simple transport system and handling methods were developed (Fig. 1).  A 
more robust transport system, which includes water treatment and much larger containers, was 
developed for up to 48 hours holding time. The system is described in the report volume I and 
was used for transporting Octopus berrima from South Australia to Western Australia. 

1.2 Equipment

A large esky (i.e. insulated cooler), with a volume greater than 500 l, is needed to be able to hold 
at least 2 oyster mesh baskets. Baskets facilitate splitting the animals into size groups, which 
prevents octopus escaping, as well as fighting and cannibalism that occurs between octopus 
with a large enough size differential. The baskets are made entirely of 5 mm oyster mesh with 
a square 15 mm PVC pipe frame at the top. The top half of the basket is covered with shade 
cloth, which the octopus are unable to adhere to and are thus unable to escape (Fig. 2). A piece 
of shade cloth is folded over the PVC frame. The interior side is sewn to the oyster mesh while 
the exterior side has a loop sewn in the end. A length of rope or elastic chord is threaded through 
this loop, which allows the shade cloth to be fitted tightly around the basket, and tied off (Fig. 
3). At the base of the basket are 2 lengths of 40 mm PVC pipe, which gives the base of the 
basket some weight and stability when sitting in the esky (Fig. 4). These can be attached to the 
bottom of the basket with cable ties.

 

Figure 1. Equipment needed to transport juvenile octopus; (1) large esky (2) pure 

oxygen source or air pump (3) air stone (4) oyster mesh baskets (5) dissolved 

oxygen meter. 

 

 

Figure 2. Basket profile (1) 5 mm oyster mesh (2) shade cloth covering (3) PVC 

frame at the top. 
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Figure 2.  Basket profile (1) 5 mm oyster mesh (2) shade cloth covering (3) PVC frame at the top.

 

Figure 3. Basket profile. (1) Loop in exterior shade cloth and rope/elastic drawstring 

 

Figure 4. Basket profile. (1) Positioning of the 40 mm PVC pipe lengths. 
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Figure 4. Basket profile. (1) Positioning of the 40 mm PVC pipe lengths. 
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Figure 4.  Basket profile. (1) Positioning of the 40 mm PVC pipe lengths.

The octopus do not need to be electronically weighed before being split into the baskets, rather 
a visual grading of size is adequate. Electronically weighing octopus besides a wharf or pier 
before transport is time consuming and stressful to the octopus. A bigger esky increases the 
number of baskets able to used, meaning more efficient splitting of different sized octopus. The 
esky should be fitted with a dump valve at the base to allow easy removal of water after transport 
and a lid to stop water splashing out during transport as well as any escaping octopus (Fig. 5).

The octopus do not need to be electronically weighed before being split into the 

baskets, rather a visual grading of size is adequate. Electronically weighing octopus 

besides a wharf or pier before transport is time consuming and stressful to the 

octopus. A bigger esky increases the number of baskets able to used, meaning more 

efficient splitting of different sized octopus. The esky should be fitted with a dump 

valve at the base to allow easy removal of water after transport and a lid to stop 

water splashing out during transport as well as any escaping octopus (Fig. 5). 

 

Figure 5. Esky profile during transport (1) dump valves (2) lid arrangement.1.2.1. 

Esky aeration & monitoring 

A large density of juvenile octopus held in an esky during transport will consume high 

volumes of dissolved oxygen. Oxygen levels will fall due to; 

1. Natural respiration. Octopus will uptake oxygen from the water to breathe 

2. Octopus excreting. Faeces will use up oxygen to break down in the water. 

3. Dissolved oxygen levels in a static body of water will naturally decrease if 

there is no water exchange. 
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Figure 5.  Esky profile during transport (1) dump valves (2) lid arrangement.1.2.1. Esky aeration 
& monitoring
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A large density of juvenile octopus held in an esky during transport will consume high volumes 
of dissolved oxygen. Oxygen levels will fall due to;

1. Natural respiration. Octopus will uptake oxygen from the water to breathe
2. Octopus excreting. Faeces will use up oxygen to break down in the water.
3. Dissolved oxygen levels in a static body of water will naturally decrease if there is no 

water exchange.

Delivering pure oxygen or air via an air stone placed in the esky will help keep dissolved 
oxygen levels high during transport. An oxygen meter (Oxyguard, YSI etc.) will allow easy 
monitoring of dissolved oxygen. Levels in the esky should not fall below 4-4.5 mg lt-1 (60% 
saturation at 20°C T 35 ppt salinity) at any stage (Fig. 6).

Delivering pure oxygen or air via an air stone placed in the esky will help keep 

dissolved oxygen levels high during transport. An oxygen meter (Oxyguard, YSI etc.) 

will allow easy monitoring of dissolved oxygen. Levels in the esky should not fall 

below 4-4.5 mg lt-1 (60% saturation at 20°C T 35 ppt salinity) at any stage (Fig. 6). 

 

Figure 6. An Oxyguard meter reading 60% saturation (4.3 mg lt-1) 

1.3. Holding (pre-stocking) 

Upon arrival to a facility, juvenile octopus will need at least 24 hours to acclimatise 

after the stress of transport. Baskets containing octopus can be taken from the esky 

and once the temperature in the esky is matched to that of a holding tank, put 

straight into a tank that is large enough to fit multiple baskets. A 5000 lt tank is ideally 

used as a holding tank (Fig. 7).  
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1.3 Holding (pre-stocking)

Upon arrival to a facility, juvenile octopus will need at least 24 hours to acclimatise after 
the stress of transport. Baskets containing octopus can be taken from the esky and once the 
temperature in the esky is matched to that of a holding tank, put straight into a tank that is large 
enough to fit multiple baskets. A 5000 lt tank is ideally used as a holding tank (Fig. 7). 
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Figure 7. A 5 000 lt holding tank set-up containing multiple baskets. 

Octopus that are held in baskets prior to stocking, only need to be fed once to 

satiation during the first 24 hours. Food can consist of any chopped, relatively cheap 

fresh feed such as Pilchards, Sardines or Prawns (Fig. 8). Incoming water should be 

open (flow-through) and set at a rate that keeps dissolved oxygen levels at 4-4.5 mg 

lt-1 (60% saturation at 20 °C at 35  ppt salinity) or greater. Dissolved oxygen should 

be measured 30 minutes after the octopus are fed, which is when levels are at their 

lowest. Water temperature between 16-23°C is ideal. Any octopus that are sick or 

have died during transport should be removed from the baskets prior to leaving the 

facility that afternoon. Uneaten food should be removed from the baskets the 

following morning prior to the octopus being weighed and stocked into grow-out 

tanks. 
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Figure 7.  A 5 000 lt holding tank set-up containing multiple baskets.

Octopus that are held in baskets prior to stocking, only need to be fed once to satiation during the 
first 24 hours. Food can consist of any chopped, relatively cheap fresh feed such as Pilchards, 
Sardines or Prawns (Fig. 8). Incoming water should be open (flow-through) and set at a rate 
that keeps dissolved oxygen levels at 4-4.5 mg lt-1 (60% saturation at 20 °C at 35  ppt salinity) 
or greater. Dissolved oxygen should be measured 30 minutes after the octopus are fed, which 
is when levels are at their lowest. Water temperature between 16-23°C is ideal. Any octopus 
that are sick or have died during transport should be removed from the baskets prior to leaving 
the facility that afternoon. Uneaten food should be removed from the baskets the following 
morning prior to the octopus being weighed and stocked into grow-out tanks.

 

Figure 8. Fresh feed used to feed juvenile octopus. Prawns (left) and Pilchards 

(right). 

1.4. Weighing and Initial Stocking  

Once the newly arrived octopus have been acclimatised for 24 hours and the grow-

out tanks are fitted and have running seawater, juvenile octopus are ready to be 

moved to the grow-out tanks at high densities. Octopus from the baskets need to be 

electronically weighed, and subsequent data recorded before they are stocked into 

the grow-out tanks (Fig. 9). This will allow the user to determine the initial weight 

range (Section 4.1) and initial biomass (Section 1.5) of the octopus in any tank. The 

octopus are best weighed individually for increased accuracy when calculating the 

initial biomass. A bucket containing seawater on a balance ensures reduced stress 

during this process (Fig.10). 
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1.4 Weighing and initial stocking 

Once the newly arrived octopus have been acclimatised for 24 hours and the grow-out tanks are 
fitted and have running seawater, juvenile octopus are ready to be moved to the grow-out tanks 
at high densities. Octopus from the baskets need to be electronically weighed, and subsequent 
data recorded before they are stocked into the grow-out tanks (Fig. 9). This will allow the 
user to determine the initial weight range (Section 4.1) and initial biomass (Section 1.5) of the 
octopus in any tank. The octopus are best weighed individually for increased accuracy when 
calculating the initial biomass. A bucket containing seawater on a balance ensures reduced 
stress during this process (Fig.10).

 

Figure 9. Information on octopus stocked into a grow-out tank after acclimatisation 
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Figure 9.  Information on octopus stocked into a grow-out tank after acclimatisation
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Figure 10. Equipment used when weighing and stocking octopus (1) Balance (2) Net 

(3) 10-20 lt bucket (4) Notepad and pencil. 

1.4.1. Initial Weight Range 

Octopus are highly cannibalistic, especially when the size differential between the 

largest and smallest octopus is high. If the largest octopus in a tank is double the 

weight of the smallest octopus (e.g. largest animal = 150 gr, smallest animal = 75 gr), 

the smallest octopus will be eaten by the larger octopus. As a result, the larger 

octopus will grow quicker than the rest of the octopus in the tank and hence will 

continue to predate on smaller octopus around it. Over time, the weight range of the 

octopus will increase meaning cannibalism of smaller octopus by larger octopus will 

increase. This means loss of stock and profit in a commercial facility. The largest 

octopus cannot be greater than 1.75 times the weight of the smallest octopus in a 

tank at the time of stocking. 

Example:  If the smallest octopus is 50 gr, than the largest octopus should be no 

greater than 87.5 gr. The weight range of octopus stocked into a tank will than be 50 

– 87.5 gr. 
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Figure 10.  Equipment used when weighing and stocking octopus (1) Balance (2) Net (3) 10-20 
lt bucket (4) Notepad and pencil.

1.4.1 Initial weight range

Octopus are highly cannibalistic, especially when the size differential between the largest and 
smallest octopus is high. If the largest octopus in a tank is double the weight of the smallest 
octopus (e.g. largest animal = 150 gr, smallest animal = 75 gr), the smallest octopus will be 
eaten by the larger octopus. As a result, the larger octopus will grow quicker than the rest of 
the octopus in the tank and hence will continue to predate on smaller octopus around it. Over 
time, the weight range of the octopus will increase meaning cannibalism of smaller octopus by 
larger octopus will increase. This means loss of stock and profit in a commercial facility. The 
largest octopus cannot be greater than 1.75 times the weight of the smallest octopus in a tank at 
the time of stocking.

Example:  If the smallest octopus is 50 gr, than the largest octopus should be no greater than 
87.5 gr. The weight range of octopus stocked into a tank will than be 50 – 87.5 gr.

* The weight range of octopus in a tank will increase slowly over time as feed rates will differ 
between individuals.

1.5 Initial biomass

The initial biomass will be the sum of the entire number of octopus stocked into a tank, once all 
the octopus in the baskets have been weighed and separated as described in Section 1.4. From 
here, daily feed amounts can be calculated and projected for the next 7 days, after which the 
octopus in that tank will need to be weighed and graded.

Following stocking of the grow-out tanks and the initial biomass being ascertained, a feed 
protocol (data sheet) can be created and followed for the next 7 days. A data sheet will give the 
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following details (Fig.11).
1. An accurate estimated biomass (total weight) of the octopus in a tank on any given day.
2. Feed type and amount that should be given each morning and afternoon.
3. Ability to enter the weight of any dead octopus (mortality), which will adjust the daily 

biomass and the amount of feed that needs to be given from that point forward.
4. Ability to enter the weight of new octopus added to the tank, which will adjust the daily 

biomass and the amount of feed that needs to be given from that point forward.
5. Detail of the number of animals in each tank on any given day.
6. Tank number and the weight range of octopus in that tank.
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1.6 Daily feed and cleaning protocol

1.6.1 Tank checks 

Upon arrival in the morning, the following things should be checked:

• Incoming water flow to all tanks should be checked and adjusted if they have fluctuated 
overnight. 

• Aeration to the tanks.

• Look around the tanks for any dead or escaped octopus. If the octopus is dead, it needs to be 
weighed and that figure be entered into the data sheet for that tank.

1.6.2 Tank cleaning (morning)

Once all the appropriate checks have been carried out, the previous afternoons feed needs to be 
removed from the tank using the following procedure in order.

1. Drop the collapsible shade cloth ring to the tank by unhooking the lever from its anchor 
point

2. Remove the steel pin at the stop of the standpipe
3. Place bucket underneath the gate valve
4. Pull the handle on the gate valve ½ to ¾ of the way open so water is exiting the tank
5. Lift oyster mesh sleeve and vigorously move it up and down until all food is out of the 

tank.
6. Once all food is out of the tank, drop oyster mesh sleeve and insert the steel pin.
7. Close the gate valve and than raise the collapsible shade cloth ring.

Waste that is removed from any tank should be disposed of and should not be re-used to feed 
octopus under any circumstances. Any dead octopus that comes out with the food waste should 
be weighed and those figures entered to that tanks data sheet.

1.6.3 Morning feed (am)

Once the previous afternoons food has been removed all the tanks, the morning feed can be 
administered to all tanks. Octopus should be fed 6% of the tank biomass, twice a day. Feed type 
and amounts can be extracted from the data sheet for that tank (Fig. 20). A balance will need to be 
used to weigh out the feed, which can be chopped with scissors or a knife. Feed can be chopped 
into a bucket or bowl for ease of carrying feed to the tank (Fig.12). It is important to clean and 
disinfect (alcohol or other disinfectant) all food preparation tools and areas after each use. 

Octopus in a grow-out tank will gather mostly on the tank wall rather down at the bottom 
(Fig.13). Because of this, food should evenly distribute along the edges of the tank ensuring the 
majority of the octopus receive some food.
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1.6.3. Morning feed (am) 

Once the previous afternoons food has been removed all the tanks, the morning feed 

can be administered to all tanks. Octopus should be fed 6% of the tank biomass, 

twice a day. Feed type and amounts can be extracted from the data sheet for that 

tank (Fig. 20). A balance will need to be used to weigh out the feed, which can be 

chopped with scissors or a knife. Feed can be chopped into a bucket or bowl for ease 

of carrying feed to the tank (Fig.12). It is important to clean and disinfect (alcohol or 

other disinfectant) all food preparation tools and areas after each use.  

Octopus in a grow-out tank will gather mostly on the tank wall rather down at the 

bottom (Fig.13). Because of this, food should evenly distribute along the edges of the 

tank ensuring the majority of the octopus receive some food. 

 

Figure 12. Feed chopped and being weighed on a balance before feeding 

Afternoon tank cleaning and feeding should follow the same procedure as that 

described for the morning cleaning (Section 1.6.2. and 1.6.3.). 
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Figure 12.  Feed chopped and being weighed on a balance before feeding

Afternoon tank cleaning and feeding should follow the same procedure as that described for the 
morning cleaning (Section 1.6.2. and 1.6.3.).

Figure 13. Octopus in a grow-out tank  

1.6.4. Water quality parameters 

For optimal growth while not affecting animal health, octopus should be grown-out at 

water temperatures between 16-23 °C. Incoming water flow rate should be ~ 100 lt 

kg octopus hr-1.  

For example; If there are 15 kg of octopus in a tank, the flow rate should be ~1500 lt 

hr-1.  

The flow rate can be adjusted dependent on dissolved oxygen levels in the tank, 

which should not fall below 4-4.5 mg lt-1 (60 % saturation at 20 °C at 35 ppt salinity) 

at any stage. 

1.7. New animal arrival 

1.7.1. Holding 

New octopus will be transported regularly over the course of a week from the 

commercial fishermen to a ranching facility. The holding (pre-stocking) procedures 

are the same as those described in Section 1.3. Octopus that have been in the grow-

out tanks for a period of time can become aggressive to newly added, wild caught 

octopus. It is important that acclimatisation for 24 hours takes place before new 

octopus are added to grow-out tanks. 
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Figure 13.  Octopus in a grow-out tank 
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1.6.4 Water quality parameters

For optimal growth while not affecting animal health, octopus should be grown-out at water 
temperatures between 16-23 °C. Incoming water flow rate should be ~ 100 lt kg octopus hr-1. 

For example; If there are 15 kg of octopus in a tank, the flow rate should be ~1500 lt hr-1. 

The flow rate can be adjusted dependent on dissolved oxygen levels in the tank, which should 
not fall below 4-4.5 mg lt-1 (60 % saturation at 20 °C at 35 ppt salinity) at any stage.

1.7 New animal arrival

1.7.1 Holding

New octopus will be transported regularly over the course of a week from the commercial 
fishermen to a ranching facility. The holding (pre-stocking) procedures are the same as those 
described in Section 1.3. Octopus that have been in the grow-out tanks for a period of time can 
become aggressive to newly added, wild caught octopus. It is important that acclimatisation for 
24 hours takes place before new octopus are added to grow-out tanks.

1.7.2  Stocking

The stocking procedure for new octopus is the same as those described in section 1.4, however 
its important that new octopus that are added to grow-out tanks are stocked with octopus of 
similar size. Information on which tanks holds certain sized octopus can be found in the data 
sheet (Fig.11).

1.8 Weighing and grading 

Weighing and grading of the octopus takes place on the 7th day after a tank is stocked. If a tank 
is left longer than 7 days without weighing and grading, the weight range of octopus in that tank 
will have increased enough for cannibalism to start occurring. This process involves weighing 
each individual octopus in all tanks so the following can be ascertained.

1. How many octopus have grown above the initial weight range stocked and have to be 
moved to a new tank (Fig.14).

2. If any octopus have reached market weight and therefore need to be culled (Section 8).
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1.8.1.  Procedure

Due to the large number of tanks that will be running in a commercial facility, weighing and 
grading on a certain day will be labour intensive and time consuming. In a commercial facility, 
having numerous 5 m³ tanks that can fit multiple baskets (Fig.1) is ideal for the weighing 
and grading process. Having baskets labelled with pre-described weight ranges in 5 m³ tanks 
(Fig.15), will allow the user to weigh the octopus from every tank and put it in a basket already 
containing similar sized octopus.

1.8.1. Procedure 

Due to the large number of tanks that will be running in a commercial facility, 

weighing and grading on a certain day will be labour intensive and time consuming. 

In a commercial facility, having numerous 5 m³ tanks that can fit multiple baskets 

(Fig.1) is ideal for the weighing and grading process. Having baskets labelled with 

pre-described weight ranges in 5 m³ tanks (Fig.15), will allow the user to weigh the 

octopus from every tank and put it in a basket already containing similar sized 

octopus. 

 

Figure 15. Baskets labelled with pre-described weight ranges. 

Once weighing and grading of the octopus is complete, all grow-out tanks will be 

empty and therefore need to be cleaned with an oxalic acid/freshwater mix and a 

scrubber. The tanks can be filled with seawater and flushed of any residual acid for 

30 minutes. The tanks can then be designated a weight range, and then stocked with 

octopus from the baskets in the 5 m³ tanks. This can easily be done by tipping the 

basket allowing the octopus to fall out or transferring them into the tank by hand. 

Juvenile octopus will maintain good health if left out of the water for up to a minute 

during this process, however time out of the water should always be minimized. 
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Figure 15.  Baskets labelled with pre-described weight ranges.

Once weighing and grading of the octopus is complete, all grow-out tanks will be empty and 
therefore need to be cleaned with an oxalic acid/freshwater mix and a scrubber. The tanks can 
be filled with seawater and flushed of any residual acid for 30 minutes. The tanks can then be 
designated a weight range, and then stocked with octopus from the baskets in the 5 m³ tanks. 
This can easily be done by tipping the basket allowing the octopus to fall out or transferring 
them into the tank by hand. Juvenile octopus will maintain good health if left out of the water for 
up to a minute during this process, however time out of the water should always be minimized.

1.9 Culling for market.

Market weight of an octopus will differ depending on the species, location and product it will 
be used for. In general, it will take up to 3-4 months in a commercial facility for O. tetricus to 
reach a market weight of 650 – 800 gr if initial average stocking weight was 50 gr. During the 
weighing and grading process (Section 1.7), octopus will be identified that are at market weight 
or over and, therefore, need to be culled. This can be done by placing the octopus against a 
hard flat surface. The tentacles of the octopus will adhere to the surface it is placed on, and 
can be held by the head and lifted slightly. Using a sharp knife, the head is cut off the octopus 
just under the eyes. Both the remaining ‘hands’ and head should be put into an ‘ice slurry’ (ice/
seawater mix) to maintain product quality. The head can then be discarded.
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1.10 Grow-out system

1.10.1 Tank design

Prior to weighing and initial stocking (Section 1.4), suitable grow-out tanks need to be fitted 
and installed ready to receive the octopus. A fibreglass, conical bottom tank of 2000 lt volume 
is ideal for grow-out (Fig.16). Its circular shape and conical base allows incoming water at the 
surface to undergo a circular motion before leaving the tank at the bottom. This circular motion 
means that any food or waste is directed to the base, centre of the tank. A 50 mm PVC external 
standpipe governs the height of the water in the tank (Fig.17,18).

 

Figure 16. A 2000 lt fibreglass, conical bottom tank. 
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Figure 16.  A 2000 lt fibreglass, conical bottom tank.
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Figure 17. Incoming water in the 2000 lt tank. 

 

Figure 18. External Standpipe (1) attached to the base of the tank. 
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Figure 17.  Incoming water in the 2000 lt tank.

 

Figure 17. Incoming water in the 2000 lt tank. 

 

Figure 18. External Standpipe (1) attached to the base of the tank. 
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Figure 18.  External Standpipe (1) attached to the base of the tank.
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Figure 19. Gate valve with bucket underneath. 

 

At the base of the tank, a 150 mm gate valve is attached. Its handle once pulled back 

(opened), allows easy, user-friendly removal of uneaten food and waste into a bucket 

(Fig. 19). 

Attached to the inside of the tank at the top, is a collapsible shade cloth ring. As 

mentioned above, octopus are unable to adhere to shade cloth and hence this is 

fitted so octopus wont escape when the tanks unattended (Fig. 20). 

 

Figure 20. (1) Erected, collapsible shade cloth ring. 
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Figure 19.  Gate valve with bucket underneath.

At the base of the tank, a 150 mm gate valve is attached. Its handle once pulled back (opened), 
allows easy, user-friendly removal of uneaten food and waste into a bucket (Fig. 19).

Attached to the inside of the tank at the top, is a collapsible shade cloth ring. As mentioned 
above, octopus are unable to adhere to shade cloth and hence this is fitted so octopus wont 
escape when the tanks unattended (Fig. 20).

 

Figure 19. Gate valve with bucket underneath. 

 

At the base of the tank, a 150 mm gate valve is attached. Its handle once pulled back 

(opened), allows easy, user-friendly removal of uneaten food and waste into a bucket 

(Fig. 19). 

Attached to the inside of the tank at the top, is a collapsible shade cloth ring. As 

mentioned above, octopus are unable to adhere to shade cloth and hence this is 

fitted so octopus wont escape when the tanks unattended (Fig. 20). 

 

Figure 20. (1) Erected, collapsible shade cloth ring. 
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Figure 20.  (1) Erected, collapsible shade cloth ring.

The frame of the shade cloth ring is a length of 15 mm PVC pipe that is wrapped in a circle to 
form the same circumference as the top of the tank. A piece of shade cloth is than cut to that 
length (+ 100 mm) at a height of 500 mm. Shade cloth is attached to the PVC frame with cable 
ties and each end of the shade cloth is sewn together. The bottom of the shade cloth is adhered 
100 mm under the inside lip of the tank with hot glue and marine grade silicone sealant. This 
acts as an anchor so that the ring can be raised and lowered (Fig. 21).



Fisheries Research Report [Western Australia] No. 263, 2015 19

The frame of the shade cloth ring is a length of 15 mm PVC pipe that is wrapped in a 

circle to form the same circumference as the top of the tank. A piece of shade cloth is 

than cut to that length (+ 100 mm) at a height of 500 mm. Shade cloth is attached to 

the PVC frame with cable ties and each end of the shade cloth is sewn together. The 

bottom of the shade cloth is adhered 100 mm under the inside lip of the tank with hot 

glue and marine grade silicone sealant. This acts as an anchor so that the ring can 

be raised and lowered (Fig. 21). 

 

 

Figure 21.  Shade cloth profile. (1) 500 mm height when erected (2) cable ties to 

attach shade cloth to the frame (3) 15 mm PVC frame (4) location of shade cloth 

attachment on tank (5) both ends of the shade cloth sewn together. 

 

The shade cloth ring, once fixed to the inside of the tank, needs to facilitate being 

raised. Pieces of rope are connected to the PVC frame at 4 even points, which are 

long enough to meet in the middle of the circle that PVC frame creates. Ropes are 

attached to a steel ring or 2 large cable ties connected into a small circle. From here, 

a long piece of rope is attached to the circular cable tie arrangement, which is the 
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Figure 21.   Shade cloth profile. (1) 500 mm height when erected (2) cable ties to attach shade 
cloth to the frame (3) 15 mm PVC frame (4) location of shade cloth attachment on 
tank (5) both ends of the shade cloth sewn together.

The shade cloth ring, once fixed to the inside of the tank, needs to facilitate being raised. Pieces 
of rope are connected to the PVC frame at 4 even points, which are long enough to meet in the 
middle of the circle that PVC frame creates. Ropes are attached to a steel ring or 2 large cable 
ties connected into a small circle. From here, a long piece of rope is attached to the circular 
cable tie arrangement, which is the lever for the user to be able to raise and lower the ring (Fig. 
22). A clip is attached to the end of the lever, which facilitates it, being connected to an anchor 
point once the ring is raised (Fig. 23).
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lever for the user to be able to raise and lower the ring (Fig. 22). A clip is attached to 

the end of the lever, which facilitates it, being connected to an anchor point once the 

ring is raised (Fig. 23). 

 

 

Figure 22. Shade cloth profile (1) lever attached to circular cable tie or steel ring (2) 

even spacing between 4 pieces of rope connected to PVC frame (3) location of 

circular cable tie arrangement. 

 

Figure 23. (1) Clip attached to the end of the lever connected to an anchor point. 
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Figure 22.  Shade cloth profile (1) lever attached to circular cable tie or steel ring (2) even 
spacing between 4 pieces of rope connected to PVC frame (3) location of circular 
cable tie arrangement.

lever for the user to be able to raise and lower the ring (Fig. 22). A clip is attached to 

the end of the lever, which facilitates it, being connected to an anchor point once the 

ring is raised (Fig. 23). 

 

 

Figure 22. Shade cloth profile (1) lever attached to circular cable tie or steel ring (2) 

even spacing between 4 pieces of rope connected to PVC frame (3) location of 

circular cable tie arrangement. 

 

Figure 23. (1) Clip attached to the end of the lever connected to an anchor point. 
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Figure 23.  (1) Clip attached to the end of the lever connected to an anchor point.

Inside the tank, a central standpipe and 5 mm oyster mesh sleeve stops octopus escaping and 
keeps food in the tank while allowing water pass through. The standpipe itself is 80 mm (PN12) 
PVC with large 30 mm holes cut from the base of the standpipe, 1500 mm upwards (Fig. 24). 
The oyster mesh sleeve is the same length of the standpipe.
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Inside the tank, a central standpipe and 5 mm oyster mesh sleeve stops octopus 

escaping and keeps food in the tank while allowing water pass through. The 

standpipe itself is 80 mm (PN12) PVC with large 30 mm holes cut from the base of 

the standpipe, 1500 mm upwards (Fig. 24). The oyster mesh sleeve is the same 

length of the standpipe. 

 

Figure 24. (1) PVC standpipe and the location of the 30 mm holes (2) oyster mesh 

sleeve. 

The large holes in the standpipe allow a high volume of seawater to pass through if a 

high flow rate is required. Octopus and uneaten food will also gather at the base of 

the tank over time covering the holes towards the base of the standpipe. The holes 

further up the standpipe allow water to pass out of the tank when this occurs. 

Without an oyster mesh sleeve covering the standpipe, octopus and food would 

simply flow out of the tank. The sleeve stops this happening while allowing water to 

pass through. When it comes time to remove uneaten food from a tank, the gate 

valve (Fig. 19) is pulled open via the handle and the sleeve lifted to allow the waste 

out. Jiggling the oyster mesh sleeve up and down while the gate valve is open is 

effective in both removing stubborn waste around the base of the standpipe while 

forcing octopus towards the edge of the tank. A hole drilled through the top of the 

standpipe facilitates a short steel rod to be inserted which stops octopus lifting the 

sleeve (Fig. 25). 
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Figure 24.  (1) PVC standpipe and the location of the 30 mm holes (2) oyster mesh sleeve.

The large holes in the standpipe allow a high volume of seawater to pass through if a high flow 
rate is required. Octopus and uneaten food will also gather at the base of the tank over time 
covering the holes towards the base of the standpipe. The holes further up the standpipe allow 
water to pass out of the tank when this occurs.

Without an oyster mesh sleeve covering the standpipe, octopus and food would simply flow 
out of the tank. The sleeve stops this happening while allowing water to pass through. When 
it comes time to remove uneaten food from a tank, the gate valve (Fig. 19) is pulled open via 
the handle and the sleeve lifted to allow the waste out. Jiggling the oyster mesh sleeve up and 
down while the gate valve is open is effective in both removing stubborn waste around the base 
of the standpipe while forcing octopus towards the edge of the tank. A hole drilled through the 
top of the standpipe facilitates a short steel rod to be inserted which stops octopus lifting the 
sleeve (Fig. 25).
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Figure 25. Standpipe profile in the tank and the location of the steel pin. 

 

External air is delivered via an air stone at the base of the tank where the tank wall 

meets the conical base. It is important to locate the air stone here so as to aerate as 

much of the water column as possible, but not to stir up uneaten food and waste near 

the base of the standpipe (Fig. 25). An external air supply will keep octopus alive and 

in good health in case water supply stops for a prolonged period. 
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Figure 25.  Standpipe profile in the tank and the location of the steel pin.

External air is delivered via an air stone at the base of the tank where the tank wall meets the 
conical base. It is important to locate the air stone here so as to aerate as much of the water 
column as possible, but not to stir up uneaten food and waste near the base of the standpipe (Fig. 
25). An external air supply will keep octopus alive and in good health in case water supply stops 
for a prolonged period.
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2.0  Octopus tetricus hatchery protocol

2.1 Broodstock 

2.1.1 Transport & equipment

Broodstock of between 1.5 – 3 kg can be collected from commercial fishermen who are operating 
locally. An esky (i.e. insulated cooler) with volume of 500 lt or greater ensures there is enough 
space and water available when transporting multiple animals. Mash bags to individually 
separate the octopus can be used, however are not necessary as octopus of this size are quite 
docile during transport (Fig. 26). Air or pure oxygen delivery via an air stone is essential, as 
large octopus will consume a lot of oxygen in a static body of water during transport. Dissolved 
oxygen levels should be kept between 4 – 4.5 mg lt-1 (60 % saturation at 20 °C at salinity of 35 
ppt). Dissolved oxygen and temperature can be monitored with an Oxygen meter.

2. Octopus tetricus hatchery protocol 
 

2.1 Broodstock  
2.1.1. Transport & Equipment 

Broodstock of between 1.5 – 3 kg can be collected from commercial fishermen who 

are operating locally. An esky (i.e. insulated cooler) with volume of 500 lt or greater 

ensures there is enough space and water available when transporting multiple 

animals. Mash bags to individually separate the octopus can be used, however are 

not necessary as octopus of this size are quite docile during transport (Fig. 26). Air or 

pure oxygen delivery via an air stone is essential, as large octopus will consume a lot 

of oxygen in a static body of water during transport. Dissolved oxygen levels should 

be kept between 4 – 4.5 mg lt-1 (60 % saturation at 20 °C at salinity of 35 ppt). 

Dissolved oxygen and temperature can be monitored with an Oxygen meter. 

 

Figure 26. Equipment needed for broodstock transport (right);  (1) pure oxygen bottle 

and air stone, (2) mesh bag, (3) esky, (left) esky profile during transport. 
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Figure 26.  Equipment needed for broodstock transport (right);  (1) pure oxygen bottle and air 
stone, (2) mesh bag, (3) esky, (left) esky profile during transport.

2.1.2 Holding system

Upon arrival to a facility, there should be tanks with water running, ready to house the broodstock. 
Round fibreglass tanks of ~1000 lt are suitable as they can house up to 6 large octopus, which 
is necessary to trigger breeding and egg laying by females.  The temperature in the transport 
esky should match that of the holding tanks before any octopus are stocked. Each tank should 
contain:

1. Internal standpipe; with small 10 mm holes at the bottom to allow incoming water to pass 
through, but to prevent octopus escaping.

2. Flow through seawater; incoming water located just above the surface of the tank so 
octopus will not attach to any plumbing and climb out.

3. Collapsible shade cloth ring; when erected, octopus are unable to escape when the tanks 
are not being tended to (See Section 1.9)
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4. Screen Filter; to allow water to pass out of the tank, but to keep newly hatched larvae in 
the tank during spawning (Fig. 27).

5. Shelters; One shelter per octopus. Males and females will hide in them while females will 
also lay eggs in them after mating (Fig. 28). 

2.1.2. Holding system 

Upon arrival to a facility, there should be tanks with water running, ready to house the 

broodstock. Round fibreglass tanks of ~1000 lt are suitable as they can house up to 6 

large octopus, which is necessary to trigger breeding and egg laying by females.  

The temperature in the transport esky should match that of the holding tanks before 

any octopus are stocked. Each tank should contain: 

1. Internal standpipe; with small 10 mm holes at the bottom to allow incoming 

water to pass through, but to prevent octopus escaping. 

2. Flow through seawater; incoming water located just above the surface of 

the tank so octopus will not attach to any plumbing and climb out. 

3. Collapsible shade cloth ring; when erected, octopus are unable to escape 

when the tanks are not being tended to (See Section 1.9) 

4. Screen Filter; to allow water to pass out of the tank, but to keep newly 

hatched larvae in the tank during spawning (Fig. 27). 

5. Shelters; One shelter per octopus. Males and females will hide in them 

while females will also lay eggs in them after mating (Fig. 28).  

 

Figure 27. Broodstock tank profile (1) Screen filter with 250 µm interchangeable 

screens (2) internal standpipe (3) incoming water (4) collapsible shade cloth ring. 
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Figure 27.  Broodstock tank profile (1) Screen filter with 250 µm interchangeable screens (2) 
internal standpipe (3) incoming water (4) collapsible shade cloth ring.

 

Figure 28. Shelter pots that are used to catch wild octopus make ideal broodstock 

tank shelters. 

2.1.3. Feeding 

Octopus in broodstock tanks should be fed once a day a fresh feed diet of Pilchards, 

Prawns, Lobster, Abalone or Crab. It is important to vary their diet as much as 

possible to match nutrition they would get in the wild. Feed should also be injected 

with a Nutrabrood broodstock additive (Nutrakol Pty Ltd) to enhance nutritional profile 

of the broodstock. Feed should be administered just prior to leaving the facility as 

octopus feed most actively at night. 

2.1.4. Mating  

Mating between broodstock in tanks can be observed by a male octopus extending 

the 3rd arm, clock wise from the right eye into the mantle cavity of the female. In most 

cases both animals will stay in their shelters during this process with only the arm of 

the male extending into the other shelter containing the female being observed.  

Mating can occur instantly, but usually after 3-4 days from when broodstock are first 

stocked into tanks. If a period of weeks goes by without mating being observed, 

water temperatures can be raised or lowered 2-3°C over a period of 24 hours to 

induce mating. This is dependent on what the initial temperature is as O. tetricus 

have a tolerable temperature range of 16-23 °C. 

 33 

Figure 28.  Shelter pots that are used to catch wild octopus make ideal broodstock tank shelters.
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2.1.3 Feeding

Octopus in broodstock tanks should be fed once a day a fresh feed diet of Pilchards, Prawns, 
Lobster, Abalone or Crab. It is important to vary their diet as much as possible to match nutrition 
they would get in the wild. Feed should also be injected with a Nutrabrood broodstock additive 
(Nutrakol Pty Ltd) to enhance nutritional profile of the broodstock. Feed should be administered 
just prior to leaving the facility as octopus feed most actively at night.

2.1.4 Mating 

Mating between broodstock in tanks can be observed by a male octopus extending the 3rd arm, 
clock wise from the right eye into the mantle cavity of the female. In most cases both animals 
will stay in their shelters during this process with only the arm of the male extending into the 
other shelter containing the female being observed. 

Mating can occur instantly, but usually after 3-4 days from when broodstock are first stocked 
into tanks. If a period of weeks goes by without mating being observed, water temperatures can 
be raised or lowered 2-3°C over a period of 24 hours to induce mating. This is dependent on 
what the initial temperature is as O. tetricus have a tolerable temperature range of 16-23 °C.

Example; if the initial temperature is 23°C, then you would lower the temperature to 19-20°C. 
Raising the temperature 3-4°C  to 26-27°C would stress  and could subsequently kill the octopus.

Octopus in different tanks can also be mixed to change the ratio of females to males and also 
compatibility, as females are selective breeders where they choose the male. This practice can 
also trigger an increase in mating.

2.1.5 Egg laying and incubation.

If a female has laid eggs, they are usually attached to the roof or sides of the shelter. To observe 
if any eggs have been laid, the shelter containing the female can be lifted out of the water briefly, 
ensuring that water is still contained inside the pot, so egg clutches can easily be noticeable 
(Fig. 29). The eggs will be easily distinguishable as a clutch of very small white eggs hanging 
from the roof of the pot, usually hidden by the tentacles of a female (Fig. 30).
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Example; if the initial temperature is 23°C, then you would lower the temperature to 

19-20°C. Raising the temperature 3-4°C  to 26-27°C would stress  and could 

subsequently kill the octopus. 

Octopus in different tanks can also be mixed to change the ratio of females to males 

and also compatibility, as females are selective breeders where they choose the 

male. This practice can also trigger an increase in mating. 

2.1.5. Egg Laying and Incubation. 

If a female has laid eggs, they are usually attached to the roof or sides of the shelter. 

To observe if any eggs have been laid, the shelter containing the female can be lifted 

out of the water briefly, ensuring that water is still contained inside the pot, so egg 

clutches can easily be noticeable (Fig. 29). The eggs will be easily distinguishable as 

a clutch of very small white eggs hanging from the roof of the pot, usually hidden by 

the tentacles of a female (Fig. 30). 

 

Figure 29. Female octopus in its shelter being checked for eggs 

 34 

Figure 29.  Female octopus in its shelter being checked for eggs

Figure 30: O. tetricus female guarding her egg clutch (Right), well developed egg 

clutch (Left). 

If eggs are discovered, the shelter containing the female should be moved into 

separate individual tank to allow her to incubate her eggs undisturbed. A female will 

generally incubate her eggs for 35 – 40 days. However, this period can vary 

dependant on temperature. Higher temperatures (21-23 °C) can decrease incubation 

time to 25-30 days, while lower temperatures (16-18 °C) can increase incubation time 

up to 45-50 days. Female octopus will eat small amounts for the first 2-3 weeks of 

their incubation period, but will cease feeding thereafter. 

 

2.2. Larvae culture system  

2.2.1. Seawater filtration and sterilisation 

Seawater entering a facility needs to be filtered and sterilised prior to entering the 

larvae culture tanks. This will ensure that any harmful bacteria and foreign marine 

organisms that could potentially harm the larvae are removed. At the minimum, 

incoming seawater should pass through a 10 µm then a 5 µm filter before passing 

through an ultraviolet (UV) steriliser (Fig. 31). 
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Figure 30. O. tetricus female guarding her egg clutch (Right), well developed egg clutch (Left).

If eggs are discovered, the shelter containing the female should be moved into separate individual 
tank to allow her to incubate her eggs undisturbed. A female will generally incubate her eggs 
for 35 – 40 days. However, this period can vary dependant on temperature. Higher temperatures 
(21-23 °C) can decrease incubation time to 25-30 days, while lower temperatures (16-18 °C) 
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can increase incubation time up to 45-50 days. Female octopus will eat small amounts for the 
first 2-3 weeks of their incubation period, but will cease feeding thereafter.

2.2 Larvae culture system 

2.2.1 Seawater filtration and sterilisation

Seawater entering a facility needs to be filtered and sterilised prior to entering the larvae culture 
tanks. This will ensure that any harmful bacteria and foreign marine organisms that could 
potentially harm the larvae are removed. At the minimum, incoming seawater should pass through 
a 10 µm then a 5 µm filter before passing through an ultraviolet (UV) steriliser (Fig. 31).

 

Figure 31. Seawater filtration and sterilisation unit (1) incoming seawater (2) 10 µm 

filter + housing (3) 5 µm filter and housing (4) UV steriliser (5) outgoing seawater. 

Blue arrows represent water direction. 

2.2.2. Larvae tank hydrodynamics 

After filtration and sterilisation, water should enter the larvae tanks from the bottom, 

so it moves upwards and out of the top of the tank and into the external standpipe. 

This is known as an ‘upwelling flow through’ system where no water is recirculated 

back to the tank at any stage. A flow meter (rotameter) is helpful in letting the user 

know how much water is passing through the tank (Fig. 32). 
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Figure 31.  Seawater filtration and sterilisation unit (1) incoming seawater (2) 10 µm filter + 
housing (3) 5 µm filter and housing (4) UV steriliser (5) outgoing seawater. Blue 
arrows represent water direction.
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2.2.2 Larvae tank hydrodynamics

After filtration and sterilisation, water should enter the larvae tanks from the bottom, so it 
moves upwards and out of the top of the tank and into the external standpipe. This is known as 
an ‘upwelling flow through’ system where no water is recirculated back to the tank at any stage. 
A flow meter (rotameter) is helpful in letting the user know how much water is passing through 
the tank (Fig. 32).

Figure 32. A. rotameter (1), seawater inlet valve (2), B. water entering external 

standpipe, C. water entering at the tank bottom, D. water entering up through the 

base and exiting the top of the tank. Blue arrows represent water direction. 

 

2.2.3. Larvae system description 

The larvae culture system comprises of 6 x 1 m³ round, conical based, fibreglass 

tanks (Fig. 33). This volume ensures octopus larvae have enough room to swim and 

move around the tanks, while also giving them the ability to escape other aggressive 

larvae and limit exposure to external environmental factors. The conical base 

A 

C D 

B 
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Figure 32.  A. rotameter (1), seawater inlet valve (2), B. water entering external standpipe, C. 
water entering at the tank bottom, D. water entering up through the base and exiting 
the top of the tank. Blue arrows represent water direction.
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2.2.3 Larvae system description

The larvae culture system comprises of 6 x 1 m³ round, conical based, fibreglass tanks (Fig. 
33). This volume ensures octopus larvae have enough room to swim and move around the 
tanks, while also giving them the ability to escape other aggressive larvae and limit exposure to 
external environmental factors. The conical base ensures water is distributed evenly throughout 
the tank and that organic matter will concentrate at the bottom of the cone around the standpipe 
(Fig. 34). 

Figure 33.  Larvae culture system

ensures water is distributed evenly throughout the tank and that organic matter will 

concentrate at the bottom of the cone around the standpipe (Fig. 34).  

 

Figure 33. Larvae culture system 

Figure 34. Larvae culture tank profile (left), inside view of the larvae culture tank 

(right) 

2.3. Artemia hatching and enrichment system 

Artemia hatching and enriching are processes that occur daily during intensive larvae 

culture, and as both processes require air, oxygen and heated seawater, they can be 

carried out using the same system (fig.35). 
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Figure 34.  Larvae culture tank profile (left), inside view of the larvae culture tank (right)
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2.3  Artemia hatching and enrichment system

Artemia hatching and enriching are processes that occur daily during intensive larvae culture, 
and as both processes require air, oxygen and heated seawater, they can be carried out using the 
same system (fig.35).

 

Figure 35. Artemia enrichment and hatch-out system. Heater (1), bath containing 

heated freshwater (2), hatching cone (3), enrichment cone (4), Air manifold (5), pure 

oxygen manifold and bottle (6 ), cone dump valve (7)  and cone seawater inlet (8). 

 

The system comprises of 8 x 50 lt fiberglass cone tanks that sit in a large 250 lt tub 

(Kolkovski et al., 2004). The tub contains freshwater that is heated to 29-30 °C, which 

evenly heats the water in the cones to between 27-30 °C. This is the optimal 

temperature for Artemia cyst hatching and enriching. Fitted to this system is a pure 

oxygen manifold which is connected to a size ‘G’ industrial oxygen bottle and a high 

volume, low pressure air manifold which is an extension of the current air delivery 

system at WAFMRL (Fig. 35). 

The pure oxygen is needed for Artemia enrichment, which occurs in the front 4 tanks. 

Air is needed when both enriching and hatching Artemia, which occurs in all 8 cones. 

Hatching Artemia only occurs in 4 tanks separate to the enrichment cones. Air 

delivery is via a perforated standpipe while pure oxygen delivery is via an air stone. 
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Figure 35.  Artemia enrichment and hatch-out system. Heater (1), bath containing heated 
freshwater (2), hatching cone (3), enrichment cone (4), Air manifold (5), pure oxygen 
manifold and bottle (6 ), cone dump valve (7)  and cone seawater inlet (8).

The system comprises of 8 x 50 lt fiberglass cone tanks that sit in a large 250 lt tub (Kolkovski et 
al., 2004). The tub contains freshwater that is heated to 29-30 °C, which evenly heats the water 
in the cones to between 27-30 °C. This is the optimal temperature for Artemia cyst hatching 
and enriching. Fitted to this system is a pure oxygen manifold which is connected to a size ‘G’ 
industrial oxygen bottle and a high volume, low pressure air manifold which is an extension of 
the current air delivery system at WAFMRL (Fig. 35).

The pure oxygen is needed for Artemia enrichment, which occurs in the front 4 tanks. Air 
is needed when both enriching and hatching Artemia, which occurs in all 8 cones. Hatching 
Artemia only occurs in 4 tanks separate to the enrichment cones. Air delivery is via a perforated 
standpipe while pure oxygen delivery is via an air stone.

A filtered seawater manifold is also fitted to this system, which is an extension of the filtered 
seawater manifold, which services the larvae tanks. Each 50 lt cone has its own seawater inlet 
and dump valve.
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2.4 Artemia grow-out system.

2.4.1 Grow-out tanks 

Once the Artemia have been hatched, harvested and rinsed, they can then be grown-out to larger 
Artemia in a separate system. The Artemia grow-out system is comprised of 6 x 1 m³ round 
conical based, fibreglass tanks (Fig. 36). The tanks should contain an internal, central standpipe 
that delivers a high volume of air and a 100 µm screen filter (Fig. 37).

Each tank can receive temperature controlled or ambient seawater via a 25 mm PVC inlet valve 
depending on Artemia growth requirements. Temperatures higher than ambient will increase 
growth rates. Connected to the base of the tank is a 50 mm dump valve connected to an elbow 
containing a male quick release (‘camlock’) fitting. The camlock fitting is used when harvesting 
Artemia.

A filtered seawater manifold is also fitted to this system, which is an extension of the 

filtered seawater manifold, which services the larvae tanks. Each 50 lt cone has its 

own seawater inlet and dump valve. 

2.4. Artemia grow-out system. 

2.4.1. Grow-out tanks  

Once the Artemia have been hatched, harvested and rinsed, they can then be grown-

out to larger Artemia in a separate system. The Artemia grow-out system is 

comprised of 6 x 1 m³ round conical based, fibreglass tanks (Fig. 36). The tanks 

should contain an internal, central standpipe that delivers a high volume of air and a 

100 µm screen filter (Fig. 37). 

Each tank can receive temperature controlled or ambient seawater via a 25 mm PVC 

inlet valve depending on Artemia growth requirements. Temperatures higher than 

ambient will increase growth rates. Connected to the base of the tank is a 50 mm 

dump valve connected to an elbow containing a male quick release (‘camlock’) fitting. 

The camlock fitting is used when harvesting Artemia. 

 

Figure 36. Artemia grow-out system 
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Figure 36.  Artemia grow-out system
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Figure 37. Artemia grow-out tank (left), (1) internal central standpipe (2) 100 µm 

screen filter (3) seawater inlet, Artemia grow-out tank profile (right) 

2.5. Larvae tank Components  

2.5.1. Outlet filters 

A 250 µm mesh filter allows for flow through of clean sterilized water into the tank 

while maintaining a constant water level and keeping larvae and live feeds inside the 

tank (Kolkovski et al., 2004).  Mesh panels are interchangeable so that they can be 

replaced with clean panels if there is an accumulation of organic matter on the mesh. 

The filter is fitted with 6 mm airline that provides internal and/or external aeration to 

help prevent blockage and keep the screens clear of excess Artemia and organic 

matter (Fig. 37).  
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Figure 37.  Artemia grow-out tank (left), (1) internal central standpipe (2) 100 µm screen filter (3) 
seawater inlet, Artemia grow-out tank profile (right)

2.5 Larvae tank components 

2.5.1 Outlet filters

A 250 µm mesh filter allows for flow through of clean sterilized water into the tank while 
maintaining a constant water level and keeping larvae and live feeds inside the tank (Kolkovski 
et al., 2004).  Mesh panels are interchangeable so that they can be replaced with clean panels if 
there is an accumulation of organic matter on the mesh. The filter is fitted with 6 mm airline that 
provides internal and/or external aeration to help prevent blockage and keep the screens clear of 
excess Artemia and organic matter (Fig. 37). 
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Figure 38. Interchangeable screens (1) fitted with 6 mm airline for internal and 

external aeration (2) Side profile of filter showing 250 µm mesh (3) positioning of filter 

inside tank (4) 

2.5.2. Standpipe 

A central standpipe at the apex of the tank bottom distributes water in an upwelling 

motion with a flow of 1000 lt hr-1. Water enters through the base of the 40 mm 

standpipe and is distributed through 10 mm holes around the base of the standpipe, 

which are covered with 250 µm mesh to prevent larvae from escaping. A fitting 

connecting the base of the standpipe to the length of 400 mm pipe allows water only 
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Figure 38.  Interchangeable screens (1) fitted with 6 mm airline for internal and external aeration 
(2) Side profile of filter showing 250 µm mesh (3) positioning of filter inside tank (4)

2.5.2 Standpipe

A central standpipe at the apex of the tank bottom distributes water in an upwelling motion with 
a flow of 1000 lt hr-1. Water enters through the base of the 40 mm standpipe and is distributed 
through 10 mm holes around the base of the standpipe, which are covered with 250 µm mesh 
to prevent larvae from escaping. A fitting connecting the base of the standpipe to the length of 
400 mm pipe allows water only to flow into the base, leaving the rest of the standpipe airtight 
and dry. An end cap is fitted to the top of the standpipe to prevent larvae from escaping (fig.39).
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to flow into the base, leaving the rest of the standpipe airtight and dry. An end cap is 

fitted to the top of the standpipe to prevent larvae from escaping (fig.39). 

 

 

Figure 39. Base of standpipe (1) 10 mm holes covered in 250 µm mesh to distribute 

flow (2) fitting to restrict water flow to base of standpipe (3) 40 mm length of pipe (4) 

end cap fitting to prevent larvae escapes (5)  
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Figure 39.  Base of standpipe (1) 10 mm holes covered in 250 µm mesh to distribute flow (2) 
fitting to restrict water flow to base of standpipe (3) 40 mm length of pipe (4) end cap 
fitting to prevent larvae escapes (5) 

2.6 Double tank system 

To keep tanks and larvae as clean as possible and to keep bacteria levels down, a method called 
‘passive transfer’ is used to move larvae from an existing tank to a new sterile tank. A ‘double 
tank system’ is used to passively move larvae from one tank to another using only water flow 
with the aid of aeration (Fig. 40).



Fisheries Research Report [Western Australia] No. 263, 2015 35

2.6. Double tank system  

To keep tanks and larvae as clean as possible and to keep bacteria levels down, a 

method called ‘passive transfer’ is used to move larvae from an existing tank to a 

new sterile tank. A ‘double tank system’ is used to passively move larvae from one 

tank to another using only water flow with the aid of aeration (Fig. 40). 

 

Figure 40. Two tanks connected using 40 mm tank adaptors (1) and a 40 mm 

threaded joiner (2) 

Once the new tank is filled with clean sterile water, there are some steps that need to 

be taken before the passive transfer commences;  

1. Flow adjustment: Water flow in the existing tank containing larvae is 

maintained at 1000 lt h-1, while the adjacent clean sterile tank has a lower flow 

of 200 lt h-1 to create positive pressure in the existing tank.  

2. Filter and standpipe into new tank: Placing a filter into the new tank ensures 

that larvae will not escape when they are moved across and allows for 

continuous flow of clean water into tank. The standpipe will prevent larvae 

from escaping.  

3. Aeration: Along with the difference in water pressure, an aeration device 

directs water and larvae toward the new tank opening. The device consists of 

a frame of 20 mm PVC that sits on the conical base of the tank. Air supply is 
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Figure 40.  Two tanks connected using 40 mm tank adaptors (1) and a 40 mm threaded joiner 
(2)

Once the new tank is filled with clean sterile water, there are some steps that need to be taken 
before the passive transfer commences; 

1. Flow adjustment: Water flow in the existing tank containing larvae is maintained at 1000 
lt h-1, while the adjacent clean sterile tank has a lower flow of 200 lt h-1 to create positive 
pressure in the existing tank. 

2. Filter and standpipe into new tank: Placing a filter into the new tank ensures that larvae 
will not escape when they are moved across and allows for continuous flow of clean water 
into tank. The standpipe will prevent larvae from escaping. 

3. Aeration: Along with the difference in water pressure, an aeration device directs water 
and larvae toward the new tank opening. The device consists of a frame of 20 mm PVC 
that sits on the conical base of the tank. Air supply is provided by 6 mm airline connected 
to 4 mm porous pipe, which is attached to the PVC frame. Porous pipe produces fine 
bubbles which creates an air curtain around half of the tank edge, directing larvae upward 
and in the direction of water flow (Fig. 41).

4. Removal of end cap: Removal of the end caps from tank adaptors in both the old and new 
tank allows the water from both tanks to combine. When there is positive pressure from 
the existing tank due to a higher flow, larvae are passively moved across to the new tank 
(Fig.42). 

Adjustment of external standpipe: Attached to the outside of the tank is an external standpipe 
that acts as an overflow for water that passes through the filter mesh as it is replaced with new 
incoming water. Overflow can be regulated using a valve fitted to the external standpipe. In 
order to increase positive pressure in the existing tank with larvae, this valve can be closed so 
that the only place for water to escape is through the ‘double tank’ fitting and into the new tank 
(Fig.43).
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provided by 6 mm airline connected to 4 mm porous pipe, which is attached to 

the PVC frame. Porous pipe produces fine bubbles which creates an air 

curtain around half of the tank edge, directing larvae upward and in the 

direction of water flow (Fig. 41). 

4. Removal of end cap: Removal of the end caps from tank adaptors in both the 

old and new tank allows the water from both tanks to combine. When there is 

positive pressure from the existing tank due to a higher flow, larvae are 

passively moved across to the new tank (Fig.42).  

5. Adjustment of external standpipe: Attached to the outside of the tank is an 

external standpipe that acts as an overflow for water that passes through the 

filter mesh as it is replaced with new incoming water. Overflow can be 

regulated using a valve fitted to the external standpipe. In order to increase 

positive pressure in the existing tank with larvae, this valve can be closed so 

that the only place for water to escape is through the ‘double tank’ fitting and 

into the new tank (Fig.43). 

  

Figure 41. Aeration device showing PVC 20 mm frame (1) with 4 mm porous pipe 

attached (2)  
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Figure 41.  Aeration device showing PVC 20 mm frame (1) with 4 mm porous pipe attached (2) 

 

Figure 42. Removal of end cap (1) attached to tank from 40 mm tank adaptor (2) to 

allow water flow to new tank  

 

Figure 43. External standpipe with valve closed in existing tank during transfer (1) 

preventing water from overflowing and directing it to the tank connection (3) external 

standpipe with valve open, allowing normal overflow in new tank (2)  
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Figure 42.  Removal of end cap (1) attached to tank from 40 mm tank adaptor (2) to allow water 
flow to new tank 
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Figure 42. Removal of end cap (1) attached to tank from 40 mm tank adaptor (2) to 

allow water flow to new tank  

 

Figure 43. External standpipe with valve closed in existing tank during transfer (1) 

preventing water from overflowing and directing it to the tank connection (3) external 

standpipe with valve open, allowing normal overflow in new tank (2)  
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Figure 43.  External standpipe with valve closed in existing tank during transfer (1) preventing 
water from overflowing and directing it to the tank connection (3) external standpipe 
with valve open, allowing normal overflow in new tank (2) 

2.7  Automated feeding system 

A semi-moist microdiet (Nutrakol Pty Ltd) was fed to larvae from 10 days post hatch via an 
automated feeding system (AMD, Department of Fisheries, Western Australia), comprised of a 
control box (Fig. 44) and automatic feeders that disperse microdiet (Fig. 45). 

2.7 Automated feeding system  

A semi-moist microdiet (Nutrakol Pty Ltd) was fed to larvae from 10 days post hatch 

via an automated feeding system (AMD, Department of Fisheries, Western 

Australia), comprised of a control box (Fig. 44) and automatic feeders that disperse 

microdiet (Fig. 45).  

 

Figure 44. Front view of control box showing LCD display screen (left) and side view of 

cable (right) 

 Figure 45. AMD feeder attached to tank wall  

2.8 Lighting  

Suspended lighting above tanks was programmed on a photoperiod of 14 hours 

dark:10 hours light (Kolkovski et al., 2004). Fluorescent lighting (‘day light’ type) was 
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Figure 44.  Front view of control box showing LCD display screen (left) and side view of cable 
(right)
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2.7 Automated feeding system  

A semi-moist microdiet (Nutrakol Pty Ltd) was fed to larvae from 10 days post hatch 

via an automated feeding system (AMD, Department of Fisheries, Western 

Australia), comprised of a control box (Fig. 44) and automatic feeders that disperse 

microdiet (Fig. 45).  

 

Figure 44. Front view of control box showing LCD display screen (left) and side view of 

cable (right) 

 Figure 45. AMD feeder attached to tank wall  

2.8 Lighting  

Suspended lighting above tanks was programmed on a photoperiod of 14 hours 

dark:10 hours light (Kolkovski et al., 2004). Fluorescent lighting (‘day light’ type) was 
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Figure 45.  AMD feeder attached to tank wall 

2.8  Lighting 

Suspended lighting above tanks was programmed on a photoperiod of 14 hours dark:10 hours 
light (Kolkovski et al., 2004). Fluorescent lighting (‘day light’ type) was between 550-600 lux 
and came on at 8.15 am and turned off at 6.15 pm. Spotlights were programmed to ‘ramp up’ 
and gradually turn on 15 minutes before fluorescent lighting came on, so as not to shock or 
cause stress to larvae and also to simulate a natural sunrise and sunset (Fig. 46). 

between 550-600 lux and came on at 8.15 am and turned off at 6.15 pm. Spotlights 

were programmed to ‘ramp up’ and gradually turn on 15 minutes before fluorescent 

lighting came on, so as not to shock or cause stress to larvae and also to simulate a 

natural sunrise and sunset (Fig. 46).  

 

Figure 46. Fluorescent light suspended above tank (1) and ‘ramp up’ spotlight (2) 

 

2.9. Daily protocol  

2.9.1 Stocking and stocking density 

Upon hatching of octopus larvae by a female carrying eggs, larvae can be stocked 

into the culture tanks. It is important that (1) larvae from the first 10 days of spawning 

are used and (2) larvae are stocked from no more than 2 consecutive spawning 

days. Approximately 8,000 larvae can be counted into each 1 m³ tank in groups of 10 

using a clicker counter (Fig. 47). 
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Figure 46.  Fluorescent light suspended above tank (1) and ‘ramp up’ spotlight (2)
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2.9 Daily protocol 

2.9.1 Stocking and stocking density

Upon hatching of octopus larvae by a female carrying eggs, larvae can be stocked into the 
culture tanks. It is important that (1) larvae from the first 10 days of spawning are used and 
(2) larvae are stocked from no more than 2 consecutive spawning days. Approximately 8,000 
larvae can be counted into each 1 m³ tank in groups of 10 using a clicker counter (Fig. 47).

  

Figure 47. Clicker counter and 1 lt jug used for stocking (left) 1 m³ culture tank (right)    

2.9.2 Hatching Artemia 

Hatching of nauplii (newly hatched Artemia < 0.4 mm) is a process that occurs every 

1-2 days during intensive larvae culture. These nauplii will be grown out to a size of 

1.5 – 2.5 mm in a separate grow-out system prior to being enriched and fed to the 

octopus larvae.  

Hatching should be carried out using the following steps: 

1. Weigh ~40 g of unhatched dry cysts (INVE sep-art) into a beaker (Fig. 48). 

2. Fill up a hatching cone in the Artemia system to 50 lt volume, place standpipe 

in the cone and turn on air so that aeration is vigorous. 

3. Add 5 ml of hatch controller (INVE Sanocare HC) to the water and allow time 

for it to fully dissolve (Fig. 48). 

4. Add cysts to the water once hatch controller has fully dissolved. 
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Figure 47.  Clicker counter and 1 lt jug used for stocking (left) 1 m³ culture tank (right)   

2.9.2  Hatching Artemia

Hatching of nauplii (newly hatched Artemia < 0.4 mm) is a process that occurs every 1-2 days 
during intensive larvae culture. These nauplii will be grown out to a size of 1.5 – 2.5 mm in a 
separate grow-out system prior to being enriched and fed to the octopus larvae. 

Hatching should be carried out using the following steps:
1. Weigh ~40 g of unhatched dry cysts (INVE sep-art) into a beaker (Fig. 48).
2. Fill up a hatching cone in the Artemia system to 50 lt volume, place standpipe in the cone 

and turn on air so that aeration is vigorous.
3. Add 5 ml of hatch controller (INVE Sanocare HC) to the water and allow time for it to 

fully dissolve (Fig. 48).
4. Add cysts to the water once hatch controller has fully dissolved.
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Figure 48. Artemia enrichment and hatch-out system components: hatch controller, 

cysts and balance (Left) 40 gr cysts weighed on balance (Right) 

2.9.3. Post hatching harvest 

After the cysts have been allowed to hatch for 24 hours in the cone, they are ready to 

be harvested. The harvester is an INVE product, which consists of a separator tube 

containing strong magnets (Fig. 49). The magnets attract all the unhatched and 

hatched shell, which are iron-coated, giving complete separation of the nauplii from 

the shells during harvesting. Decapsulation is not required when using these cysts. 

 

Figure 49. INVE cyst separator set-up to harvest hatched cysts: cone dump valve (1) 

filtered freshwater hose (2) INVE cyst separator (3) 100 µm harvest bucket (4) 
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Figure 48.  Artemia enrichment and hatch-out system components: hatch controller, cysts and 
balance (Left) 40 gr cysts weighed on balance (Right)

2.9.3 Post hatching harvest

After the cysts have been allowed to hatch for 24 hours in the cone, they are ready to be 
harvested. The harvester is an INVE product, which consists of a separator tube containing 
strong magnets (Fig. 49). The magnets attract all the unhatched and hatched shell, which 
are iron-coated, giving complete separation of the nauplii from the shells during harvesting. 
Decapsulation is not required when using these cysts.

 

Figure 48. Artemia enrichment and hatch-out system components: hatch controller, 

cysts and balance (Left) 40 gr cysts weighed on balance (Right) 

2.9.3. Post hatching harvest 

After the cysts have been allowed to hatch for 24 hours in the cone, they are ready to 

be harvested. The harvester is an INVE product, which consists of a separator tube 

containing strong magnets (Fig. 49). The magnets attract all the unhatched and 

hatched shell, which are iron-coated, giving complete separation of the nauplii from 

the shells during harvesting. Decapsulation is not required when using these cysts. 

 

Figure 49. INVE cyst separator set-up to harvest hatched cysts: cone dump valve (1) 

filtered freshwater hose (2) INVE cyst separator (3) 100 µm harvest bucket (4) 
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Figure 49. INVE cyst separator set-up to harvest hatched cysts: cone dump valve (1) filtered 
freshwater hose (2) INVE cyst separator (3) 100 µm harvest bucket (4)

Post hatching harvesting should be completed using the following process:
1. Turn off air to the cone and remove the standpipe.
2. Fully open the cone dump valve to allow water from the cone to flow into the separator, 

slowing the flow to a trickle when water starts flowing into the 100 µm harvest bucket 
(Fig. 49).
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3. Add a trickle from the filtered freshwater hose to assist nauplii and cysts through separator.
4. Allow time for the cone to completely empty and persist with the filtered freshwater rinse 

until all the nauplii have flushed through the separator. 
5. Once all the nauplii have flushed through, persist with the filtered freshwater rinse until 

the water in the harvest bucket is 100% freshwater.
6. Switch to filtered seawater at this point and persist with this until water in the bucket is 

100 % seawater.

2.9.4 Harvesting

Harvesting should be completed using the following process:
1. Once grow-out tanks containing Artemia are at a size suitable to feed octopus larvae (1.5-

2.5 mm), they should be harvested. A 250 µm screen bucket connected to an air source 
and a 50 mm PVC hose with a female cam lock fitting at one end are required. The female 
cam lock fitting attaches to a male cam lock fitting at the base of the tank (Fig. 50).

2. Remove the standpipe from inside the tank and open the dump valve at the base of the 
tank to allow water to flow in to the harvest bucket, adjust the valve so that the screens in 
the bucket do not block causing the water to overflow. Take a sub sample from the bucket 
using a pipette and a counting cell to calculate how many Artemia you have harvested. 
Approximately 2 million Artemia should be harvested so that there are enough available 
across all feeding over the next 24 hours (Section 5).

3. Rinse the bucket containing Artemia with filtered fresh water until 100 % fresh water.
4. Following the freshwater rinse, rinse with filtered seawater until 100 % seawater.

2.9.4. Harvesting 

Harvesting should be completed using the following process: 

 

1. Once grow-out tanks containing Artemia are at a size suitable to feed octopus 

larvae (1.5-2.5 mm), they should be harvested. A 250 µm screen bucket 

connected to an air source and a 50 mm PVC hose with a female cam lock 

fitting at one end are required. The female cam lock fitting attaches to a male 

cam lock fitting at the base of the tank (Fig. 50). 

2. Remove the standpipe from inside the tank and open the dump valve at the 

base of the tank to allow water to flow in to the harvest bucket, adjust the valve 

so that the screens in the bucket do not block causing the water to overflow. 

Take a sub sample from the bucket using a pipette and a counting cell to 

calculate how many Artemia you have harvested. Approximately 2 million 

Artemia should be harvested so that there are enough available across all 

feeding over the next 24 hours (Section 5). 

3. Rinse the bucket containing Artemia with filtered fresh water until 100 % fresh 

water. 

4. Following the freshwater rinse, rinse with filtered seawater until 100 % 

seawater. 
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Figure 50.  Harvest method of grow-out Artemia tanks (Left) Hose attachment to tank set-up (Right)

2.9.5 Artemia pre–enrichment stocking

After the required amount of 1.5 – 2.5 mm Artemia has been harvested from the grow-out tanks, 
the Artemia should be enriched before feeding them to the octopus larvae. 
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Once rinsing is complete, the Artemia should be stocked into 3 enrichment cones filled with 
20 lt seawater with vigorous aeration, a trickle of pure oxygen and 0.2 ml of ‘Roti diet’ paste 
(Reed Mariculture, USA). 600,000 Artemia should be stocked in the first two cones (8:00 am 
and 12:00 pm) with 800,000 Artemia being stocked in the third cone (3:00 pm) (Fig. 51). The 
extra 200,000 Artemia stocked into third cone should be cold stored for overnight dosing. 

Figure 50. Harvest method of grow-out Artemia tanks (Left) Hose attachment to tank 

set-up (Right) 

2.9.5. Artemia Pre –enrichment stocking 

After the required amount of 1.5 – 2.5 mm Artemia has been harvested from the 

grow-out tanks, the Artemia should be enriched before feeding them to the octopus 

larvae.  

Once rinsing is complete, the Artemia should be stocked into 3 enrichment cones 

filled with 20 lt seawater with vigorous aeration, a trickle of pure oxygen and 0.2 ml of 

‘Roti diet’ paste (Reed Mariculture, USA). 600,000 Artemia should be stocked in the 

first two cones (8:00 am and 12:00 pm) with 800,000 Artemia being stocked in the 

third cone (3:00 pm) (Fig. 51). The extra 200,000 Artemia stocked into third cone 

should be cold stored for overnight dosing.  

 

Figure 51. Cone designation for manual feed events during the day 

 

2.10. Artemia Enrichment 

Enrichment involves feeding the Artemia a high quality feed, usually with a specific 

protein to lipid ratio with vitamins and minerals, to greatly enhance their nutritional 

8:00 am 
12:00 pm 

3:00 pm 
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Figure 51.  Cone designation for manual feed events during the day

2.10 Artemia enrichment

Enrichment involves feeding the Artemia a high quality feed, usually with a specific protein 
to lipid ratio with vitamins and minerals, to greatly enhance their nutritional quality, which 
subsequently will affect the octopus larvae. Artemia are suitable as live prey in larval culture 
because:

• They can be grown out at high densities to a variety of sizes. 

• They will readily uptake any enrichment meaning there nutritional profile can be manipulated 
to suit any larvae dietary requirements.

• They are very hardy, tolerating saline, fresh and oxygen deficient water.

• They stimulate early hunting and feeding mechanisms in larvae.

• They are easy to obtain, store and hatch.

Artemia enrichment should be completed using the following process:
1. The amount of Artikol (Nutrakol Pty Ltd) enrichment required is 0.5 gr lt-1 seawater. 

Therefore, if the enrichment cone contains 20 lt of seawater, 10 gr of enrichment should 
be mixed with an amount of seawater (seawater is used to adequately blend the enrichment 
into a liquid prior to feeding to the Artemia). For three cones, 30 gr of enrichment is 
required. 
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2. In a jug, mix the 30 gr enrichment with 1.5 lt seawater for 30 seconds using a blender 
(Fig.52).   

3. Separate the 1.5 lt mixture into 3 bottles: 2 bottles should be cold stored for a manual one 
hour enrichment at 11:00 am (12:00 pm feed) and 2:00 pm (3:00 pm feed) for feeding 
that day, and one bottle topped up with 500 ml seawater and cold stored to automatically 
enrich for 8:00 am cone at 2:00 am the following morning.

4. The overnight enrichment should be rigged to a peristaltic pump on a timer so that it 
automatically doses from the fridge at 2:00 am the following morning (Fig. 53). 

 
Figure 52. Enrichment process; jug and balance used to weigh out the enrichment 

(Left) blender used to mix the enrichment with seawater prior to feeding to the 

Artemia (Right). 

 

Figure 53. 2:00 am enrichment bottle connected to a peristaltic pump (1) and a 

feeding line (2)  

2.11. Feeding 

Larvae should be fed 6 times daily – 3 times manually during the day and 3 times via 

an automated system during the night, enriched Artemia that are between 1.5-2.5 

mm.  

Manual feeds to larvae during the day can be carried out using the following process: 

1. Turn off air and oxygen and remove the standpipe from the cone. 
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Figure 52.  Enrichment process; jug and balance used to weigh out the enrichment (Left) blender 
used to mix the enrichment with seawater prior to feeding to the Artemia (Right).
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(Left) blender used to mix the enrichment with seawater prior to feeding to the 

Artemia (Right). 

 

Figure 53. 2:00 am enrichment bottle connected to a peristaltic pump (1) and a 

feeding line (2)  
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Larvae should be fed 6 times daily – 3 times manually during the day and 3 times via 

an automated system during the night, enriched Artemia that are between 1.5-2.5 

mm.  
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Figure 53.  2:00 am enrichment bottle connected to a peristaltic pump (1) and a feeding line (2) 
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2.11 Feeding

Larvae should be fed 6 times daily – 3 times manually during the day and 3 times via an 
automated system during the night, enriched Artemia that are between 1.5-2.5 mm. 

Manual feeds to larvae during the day can be carried out using the following process:

1. Turn off air and oxygen and remove the standpipe from the cone.
2. Open the cone dump valve so that the contents of the cone fall into a 250 µm harvest 

bucket.
3. Rinse the bucket containing Artemia with filtered fresh water until water in the bucket is 

100 % fresh.
4. Following the freshwater rinse, rinse with filtered seawater until water in the bucket is 

100 % seawater
5. Count the Artemia in the bucket and use jugs to portion smaller amounts to feed to the 

octopus larvae (Fig. 54).

2. Open the cone dump valve so that the contents of the cone fall into a 250 µm 

harvest bucket. 

3. Rinse the bucket containing Artemia with filtered fresh water until water in the 

bucket is 100 % fresh. 

4. Following the freshwater rinse, rinse with filtered seawater until water in the 

bucket is 100 % seawater 

5. Count the Artemia in the bucket and use jugs to portion smaller amounts to 

feed to the octopus larvae (Fig. 54).                       

                                       

 

Figure 54.  Post enrichment process; standpipe and Artemia from cone removed (1) 

filtered freshwater rinse (2) filtered seawater rinse (3) jugs to portion Artemia to feed 

to octopus larvae (4). 

Night feeding:  Artemia that are cold stored for overnight feeding should be 

programmed be fed via peristaltic pumps at 6:00 pm, 12:00 am and 06:00 am. 

Night feeding should be completed using the following process: 

1 2 

3 4
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Figure 54.   Post enrichment process; standpipe and Artemia from cone removed (1) filtered 
freshwater rinse (2) filtered seawater rinse (3) jugs to portion Artemia to feed to 
octopus larvae (4).

Night feeding:  Artemia that are cold stored for overnight feeding should be programmed be fed 
via peristaltic pumps at 6:00 pm, 12:00 am and 06:00 am.

Night feeding should be completed using the following process:
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1. Fill a 25 lt bucket with seawater and 200,000 Artemia from the 3:00 pm feed (50,000 
Artemia for each tank).

2. The bucket should be inside an esky with ice as cold water slows down the metabolic 
process of the Artemia inside the bucket meaning they retain their enrichment.

3. Add aeration to the water. 
4. 4 peristaltic pumps should be connected with 2 lines- the incoming line should be in the 

bucket containing Artemia while outgoing is in the larvae tank (Fig. 55).
5. Make sure there are 4 lines inside the bucket connected to 4 pumps. The pumps are set to 

work 3 times overnight at 18:00 pm, 24:00 am and 06:00 am.

1. Fill a 25 lt bucket with seawater and 200,000 Artemia from the 3:00 pm feed 

(50,000 Artemia for each tank). 

2. The bucket should be inside an esky with ice as cold water slows down the 

metabolic process of the Artemia inside the bucket meaning they retain their 

enrichment. 

3. Add aeration to the water.  

4. 4 peristaltic pumps should be connected with 2 lines- the incoming line should 

be in the bucket containing Artemia while outgoing is in the larvae tank (Fig. 

55). 

5. Make sure there are 4 lines inside the bucket connected to 4 pumps. The 

pumps are set to work 3 times overnight at 18:00 pm, 24:00 am and 06:00 am. 

 

Figure 55. Cold storage esky containing a 25 lt bucket with air source and pump line 

(left) peristaltic pump profile with seawater addition, incoming and outgoing lines 

(right). 

• Feed densities to be monitored as to not have excess of Artemia, but at the 

same time not to over feed larvae. Additional feeds between major feed 

events can be given if larvae are eating Artemia out quickly. 

• Live copepods to be fed at 9 am each morning along with 25 g of frozen 

copepods. These should be mixed with 6 lt of seawater in a 10 lt bucket in an 

esky with ice, and dosed to treatment tanks at 11:00 am each morning. 

seawater 

 

incoming 

 

outgoing 
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Figure 55.  Cold storage esky containing a 25 lt bucket with air source and pump line (left) 
peristaltic pump profile with seawater addition, incoming and outgoing lines (right).

• Feed densities to be monitored as to not have excess of Artemia, but at the same time not 
to over feed larvae. Additional feeds between major feed events can be given if larvae are 
eating Artemia out quickly.

• Live copepods to be fed at 9 am each morning along with 25 g of frozen copepods. These 
should be mixed with 6 lt of seawater in a 10 lt bucket in an esky with ice, and dosed to 
treatment tanks at 11:00 am each morning.

• All tanks to be fed 500-800 µm micro diet from 10 dph via an automated feeding system.

2.12 Plankton collection

Live zooplankton can be collected from the ocean on a daily basis each morning. The collecting 
system is comprised of a floating 5 mm oyster mesh housing in which zooplankton were 
transported via a submersible pump to a 200 lt collector with 1000 µm filter. Plankton should 
be condensed using a 250 µm filter in a 100 lt collector. A spotlight to attract the plankton was 
attached to the mesh housing and was run from 6 pm to 6 am using a timer (fig.56). The majority 
of species that were collected were Copepods and some crab larvae. Smaller zooplankton can 



46 Fisheries Research Report [Western Australia] No. 263, 2015

be collected from this tank via a dump valve and hose directly into a 100 µm harvest bucket. 
Contents of the harvest bucket can be transferred to a bucket containing a lid for transport back 
to the facility.

• All tanks to be fed 500-800 µm micro diet from 10 dph via an automated 

feeding system. 

2.12. Plankton collection 

Live zooplankton can be collected from the ocean on a daily basis each morning. The 

collecting system is comprised of a floating 5 mm oyster mesh housing in which 

zooplankton were transported via a submersible pump to a 200 lt collector with 1000 

µm filter. Plankton should be condensed using a 250 µm filter in a 100 lt collector. A 

spotlight to attract the plankton was attached to the mesh housing and was run from 

6 pm to 6 am using a timer (fig.56). The majority of species that were collected were 

Copepods and some crab larvae. Smaller zooplankton can be collected from this 

tank via a dump valve and hose directly into a 100 µm harvest bucket. Contents of 

the harvest bucket can be transferred to a bucket containing a lid for transport back 

to the facility. 

Figure 56. Plankton collector containing the submersible and pond light directly 

above. 
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Figure 56.  Plankton collector containing the submersible and pond light directly above.

2.13 Transfers 

To keep tanks and larvae as clean as possible and keep bacteria levels down, a method called 
‘passive transfer’ was developed and is used to move larvae from an existing tank to a new 
sterile tank every 7 days, starting after 7 dph. A ‘double tank system’ is used to passively move 
larvae from one tank to another using only water flow with the aid of aeration (Fig. 57).

2.13. Transfers  

To keep tanks and larvae as clean as possible and keep bacteria levels down, a 

method called ‘passive transfer’ was developed and is used to move larvae from an 

existing tank to a new sterile tank every 7 days, starting after 7 dph. A ‘double tank 

system’ is used to passively move larvae from one tank to another using only water 

flow with the aid of aeration (Fig. 57). 

 

Figure 57. Two larvae tanks connected using 40 mm tank adaptors (1) and a 40 mm 

threaded joiner (2) 

Once the new tank is filled with clean sterile water, there are some steps that need to 

be taken before the passive transfer commences;  

1. Flow adjustment. Water flow in the existing tank containing larvae is 

maintained at 1000 lt h-1, while the adjacent clean sterile tank has a lower flow 

of 200 lt h-1 to create positive pressure in the existing tank.  

2. Filter and standpipe into new tank. Placing a filter and standpipe into the new 

tank ensures that larvae will not escape when they are moved across and 

allows for continuous flow of clean water into tank. The standpipe will direct 

water flow as upwelling while also preventing larvae escapes.  

3. Aeration. Along with the difference in water pressure, an aeration device 

directs water and larvae toward the new tank opening. The device consists of 

a frame of 20 mm PVC that sits on the conical base of the tank. Air supply is 

provided by 6 mm airline connected to 4 mm porous pipe, which is attached to 

 59 

Figure 57.  Two larvae tanks connected using 40 mm tank adaptors (1) and a 40 mm threaded 
joiner (2)

Once the new tank is filled with clean sterile water, there are some steps that need to be taken 
before the passive transfer commences; 

1. Flow adjustment. Water flow in the existing tank containing larvae is maintained at 1000 
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lt h-1, while the adjacent clean sterile tank has a lower flow of 200 lt h-1 to create positive 
pressure in the existing tank. 

2. Filter and standpipe into new tank. Placing a filter and standpipe into the new tank ensures 
that larvae will not escape when they are moved across and allows for continuous flow 
of clean water into tank. The standpipe will direct water flow as upwelling while also 
preventing larvae escapes. 

3. Aeration. Along with the difference in water pressure, an aeration device directs water 
and larvae toward the new tank opening. The device consists of a frame of 20 mm PVC 
that sits on the conical base of the tank. Air supply is provided by 6 mm airline connected 
to 4 mm porous pipe, which is attached to the PVC frame. Porous pipe produces fine 
bubbles, which create an air, curtain around half of the tank edge, directing larvae upward 
and in the direction of water flow (Fig. 58).

4. Removal of end cap. Removal of the end caps from the tank adaptors in both the old and 
new tank allows the water from both tanks to combine. When there is positive pressure 
from the existing tank due to a higher flow, larvae are passively moved across to the new 
tank. 

5. Adjustment of external standpipe. Attached to the outside of the tank is an external 
standpipe that acts as an overflow in the larvae tank. Outgoing water can be regulated 
using a valve fitted to the external standpipe. In order to increase positive pressure in 
the existing tank with larvae, this valve can be closed so that the only place for water to 
escape is through the ‘double tank’ fitting and into the new tank (Fig. 59)

the PVC frame. Porous pipe produces fine bubbles, which create an air, 

curtain around half of the tank edge, directing larvae upward and in the 

direction of water flow (Fig. 58). 

4. Removal of end cap. Removal of the end caps from the tank adaptors in both 

the old and new tank allows the water from both tanks to combine. When there 

is positive pressure from the existing tank due to a higher flow, larvae are 

passively moved across to the new tank.  

5. Adjustment of external standpipe. Attached to the outside of the tank is an 

external standpipe that acts as an overflow in the larvae tank. Outgoing water 

can be regulated using a valve fitted to the external standpipe. In order to 

increase positive pressure in the existing tank with larvae, this valve can be 

closed so that the only place for water to escape is through the ‘double tank’ 

fitting and into the new tank (Fig. 59) 

 
Figure 58. Aeration device showing PVC 20 mm frame (1) with 4 mm porous pipe                                                               

attached (2)   
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Figure 58.  Aeration device showing PVC 20 mm frame (1) with 4 mm porous pipe attached (2) 
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Figure 59. External standpipe with valve closed in existing tank during transfer (1), 

preventing water from overflowing and directing it to the tank connection (3), external 

standpipe with valve open, allowing normal overflow in new tank (2).  

2.14. Photoperiod 
The photoperiod should be 14 hr dark:10 hr light to mimic the natural photoperiod. 

Light intensity was 550-600 lux at the water surface via ‘day light’ fluorescent lights. It 

is advisable that the lights should ramp up and down each day to prevent stress to 

larvae with sudden lighting. 

2.15. Water quality 

Temperature and dissolved oxygen measurements should be taken daily using a 

dissolved oxygen meter. Water in all tanks should be maintained at 21 °C ± 1° C via 

a heater-chiller unit. A flow rate of 1000 lt hr-1 to be maintained at all times.  The 

bottom of the larvae tanks and excess live feed should be siphoned daily into a 250 

µm screen bucket. Any remaining live larvae that are siphoned into the bucket should 

be returned to the tank using a pipette (Fig. 60). 
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Figure 59.  External standpipe with valve closed in existing tank during transfer (1), preventing 

water from overflowing and directing it to the tank connection (3), external standpipe 
with valve open, allowing normal overflow in new tank (2). 

2.14 Photoperiod

The photoperiod should be 14 hr dark:10 hr light to mimic the natural photoperiod. Light intensity 
was 550-600 lux at the water surface via ‘day light’ fluorescent lights. It is advisable that the lights 
should ramp up and down each day to prevent stress to larvae with sudden lighting.

2.15 Water quality

Temperature and dissolved oxygen measurements should be taken daily using a dissolved 
oxygen meter. Water in all tanks should be maintained at 21 °C ± 1° C via a heater-chiller unit. 
A flow rate of 1000 lt hr-1 to be maintained at all times.  The bottom of the larvae tanks and 
excess live feed should be siphoned daily into a 250 mm screen bucket. Any remaining live 
larvae that are siphoned into the bucket should be returned to the tank using a pipette (Fig. 60).

 

Figure 60. Siphoning method (1) acrylic rod used as the siphon tube (2) siphon hose 

placed in a 250 µm screen bucket 
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Figure 60.  Siphoning method (1) acrylic rod used as the siphon tube (2) siphon hose placed in 
a 250 µm screen bucket


